Simplicial Convolutions an edge case

- Analysis of edge data (flows), difference vs. node data
- Convolutions on edges: Spatial; Spectral
- Processing and learning: Filters, NNs, ..., GPs, ...

Graphs vs Simplicial 2-Complexes

Graph $=$ Simplicial 1-complex

Simplicial Signals

Signals on nodes, edges, triangles,

Node data

- Alternating property
- Magnitude and sign

Edge flows

- Flow-type data (natural)
-Physical world: traffic flow, water flow, information flow...
-Forex: exchange rates
- Game theory (Candogan et al. 2011)
- Ranking data (Jiang et al. 2011)
- Edge-based vector field discretisation (computer graphics)
- ...
- Representation learning

Simplicial complexes and Data in real world

Traffic flows (Jia et al. 2019)

Foreign currency exchange (Jiang et al. 2011)

Others:

- Currents/Voltage in electric circuits/grid
- Game theory (Candogan et al. 2011)
- Ranking theory (Jiang et al. 2011)
- Information flows
- Discrete vector fields

Neuroscience (Anand et al. 2023):

1. Firing of neurons
2. Activation of multiple brain regions

Algebraic reps. of simplicial 2-complex

 Incidences \& LaplaciansEdge-to-Faces
Node-to-Edge

$$
\mathbf{B}_{1}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{gathered}\left(\begin{array}{cccccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} & e_{8} & e_{9} & e_{10} \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 & -1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

$$
\mathbf{B}_{2}=\begin{gathered}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5} \\
e_{6} \\
e_{7} \\
e_{8} \\
e_{9} \\
e_{10}
\end{gathered}\left(\begin{array}{ccc}
t_{1} & t_{2} & t_{3} \\
1 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Graph Laplacian: $\mathbf{L}_{0}=\mathbf{B}_{1} \mathbf{B}_{1}^{\top}$
Up
1-Hodge Laplacian: $\mathbf{L}_{1}=\mathbf{B}_{1}^{\top} \mathbf{B}_{1}+\mathbf{B}_{2} \mathbf{B}_{2}^{\top}:=\mathbf{L}_{1, d}+\mathbf{L}_{1, u}$

Incidence \& Laplacians
 - Node signal \mathbf{v}
 - Edge flows f

Gradient of node signal: $\left[\mathbf{f}_{\mathrm{G}}\right]_{[i, j]}=\left[\mathbf{B}_{1}^{\top} \mathbf{v}\right]_{[i, j]}=[\mathbf{v}]_{j}-[\mathbf{v}]_{i}$

$$
\left[\mathbf{B}_{1}^{\top} \mathbf{v}\right]_{[1,2]}=-1.34-0.96=-2.30
$$

Incidence \& Laplacians
 1st and 2nd order Discrete Derivatives

Divergence of edge flows: $\left[\mathbf{B}_{1} \mathbf{f}_{[i]}=\sum_{j<i} \mathbf{f}_{[j, i]}-\sum_{i<k} \mathbf{f}_{[i, k]}\right.$
Net-flow $=$ in_flow - out_flow

$$
\left[\mathbf{B}_{1} \mathbf{f}\right]_{5}=0.5+2.6-(0.9+2.6)=-0.4
$$

Incidence \& Laplacians
 1st and 2nd order Discrete Derivatives

Curl of edge flows: $\left[\mathbf{B}_{2}^{\top} \mathbf{f}\right]_{t}=\mathbf{f}_{[i, j]}+\mathbf{f}_{[j, k]}-\mathbf{f}_{[i, k]}$, for $t=[i, j, k]$ Net-circulation in triangles

$$
\left[\mathbf{B}_{2}^{\top} \mathbf{f}\right]_{[1,2,3]}=-1.2+1.8-(-2.9)=3.5
$$

Incidence \& Laplacians
 1st and 2nd order Discrete Derivatives

Gradient of node signal: $\mathbf{B}_{1}^{\top} \mathbf{v} \quad\left[\mathbf{f}_{\mathrm{G}}\right]_{[i, j]}=[\mathbf{v}]_{j}-[\mathbf{v}]_{i}$
Divergence of edge flows: $\quad\left[\mathbf{B}_{1} \mathbf{f}_{[i]}=\sum_{j<i} \mathbf{f}_{[j, i]}-\sum_{i<k} \mathbf{f}_{[i, k]}\right.$
Net-flow $=$ in_flow - out_flow
Curl of edge flows: $\left[\mathbf{B}_{2}^{\top} \mathbf{f}\right]_{t}=\mathbf{f}_{[i, j]}+\mathbf{f}_{[j, k]}-\mathbf{f}_{[i, k]}$, for $t=[i, j, k]$
Net-circulation in triangles

$$
\begin{aligned}
& {\left[\mathbf{B}_{1} \mathbf{f}\right]_{5}=0.5+2.6-(0.9+2.6)=-0.4} \\
& {\left[\mathbf{B}_{2}^{\top} \mathbf{f}\right]_{[1,2,3]}=-1.2+1.8-(-2.9)=3.5}
\end{aligned}
$$

Hodge Laplacians = Grad Div + Curl ${ }^{*}$ Curl
Hodge Laplacian: $\mathbf{L}_{1}=\mathbf{B}_{1}^{\top} \mathbf{B}_{1}+\mathbf{B}_{2} \mathbf{B}_{2}^{\top}$
$\Delta_{1}=\nabla(\nabla \cdot)+\nabla \times(\nabla \times)$

A Circuit toy example

(Grady et al. 2010)

$\mathbf{v} \in \mathbb{R}^{\mathcal{N}}:$ Electric potential on nodes
$\mathbf{f}_{\text {Vol }}=\mathbf{B}_{1}^{\top} \mathbf{v}$: (Kirchhoff's voltage law)
$\mathbf{f}_{\text {currents }}=\underset{\text { Diggonal resistancelconductance }}{\mathbf{G}_{4}^{-1} \mathbf{f}_{\text {Vol }} \text { : currents (Ohm's law) }}$
Kirchhoff's current law: $\mathbf{B}_{1} \mathbf{f}_{\text {currents }}=\mathbf{0}$

$$
\mathbf{B}_{1}=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 1 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1
\end{array}\right) \quad \mathbf{v}_{\text {vol }}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
2 \\
0
\end{array}\right)
$$

$$
\text { Or } \mathbf{B}_{1} \mathbf{f}_{\text {currents }}+\mathbf{v}_{\text {curr source }}=\mathbf{0}
$$

$$
\mathbf{B}_{1} \mathbf{G}^{-1} \mathbf{B}_{1}^{\top} \mathbf{v}_{\text {vol }}+\mathbf{v}_{\text {curr source }}=\mathbf{0}
$$

Hodge decomposition

$$
\mathbb{R}^{N_{1}}=\operatorname{im}\left(\mathbf{B}_{1}^{\top}\right) \oplus \operatorname{ker}\left(\mathbf{L}_{1}\right) \oplus \operatorname{im}\left(\mathbf{B}_{2}\right)
$$

Lovász et al. 2004; Lim et al. 2020

- This holds for any simplex order k

- What is the case for $k=0$?
- Characteristic decomposition

Applications of Hodge decomposition

Ocean currents

Gradient flow
Curl-free, irrotational

Curl flow
Div-free, solenoidal
Chen, Yu-Chia et al. (2021) "Helmholtzian Eigenmap."

- Water flows (div-free)
- Electrical currents, voltages
- Brain networks (Anand et al. 2022)
- Game theory (Candogan et al. 2011)
- Ranking problems (Jiang et al. 2011)
- Random walks (Strang et al. 2020)
- ...
$f_{[a, b]}+f_{[b, c]}-f_{[a, c]}=0 \quad$ Curl-free

Eigenspace of L_{1} spans Hodge subspaces

- Nonzero Eigenspace of down Laplacian spans the gradient space
- Nonzero Eigenspace of up Laplacian spans the curl space
- Kernel of Laplacian spans the harmonic space

Simplicial Fourier transform
Frequency - eigenvalues
Fourier basis - eigenvectors

$$
\lambda_{G}=\left\|\mathbf{B}_{1} \mathbf{u}_{G}\right\|_{2}^{2}
$$

Gradient eigenvector
Fourier basis reflecting divergent properties

$$
\lambda_{C}=\left\|\mathbf{B}_{2}^{\top} \mathbf{u}_{C}\right\|_{2}^{2}
$$

Curl eigenvector

Fourier basis reflecting rotational properties

$\circ \tilde{\mathbf{x}}_{k}=\mathbf{U}_{k}^{\top} \mathbf{x}_{k}$

$$
\circ \tilde{\mathbf{x}}_{k}=\left[\tilde{\mathbf{x}}_{k, \mathrm{H}}^{\top}, \tilde{\mathbf{x}}_{k, \mathrm{G}}^{\top}, \tilde{\mathbf{x}}_{k, \mathrm{C}}^{\top}\right]
$$

Eigenspace spans Hodge subspaces

- Down Laplacian, its nonzero eigenspace spans the gradient space

λ_{G}, more divergent
- Up laplacian, its nonzero eigenspace spans the curl space

λ_{C}, more rotational

Edge Convolution

 Shift-and-Sum

$$
\left[\mathbf{L}_{1, d} \mathbf{f}\right]_{i}=\sum_{j \in\left\{\mathcal{N}_{1, i}, U\right\}}\left[\mathbf{L}_{1, d}\right]_{i j}[\mathbf{f}]_{j}
$$

Simplicial locality

Spatial/Topological

Convolutional filter

$\mathbf{H}:=\mathbf{H}\left(\mathbf{L}_{\mathrm{d}}, \mathbf{L}_{\mathrm{u}} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right)=\sum_{k=0}^{K_{\mathrm{d}}} \alpha_{k} \mathbf{L}_{\mathrm{d}}^{k}+\sum_{k=0}^{K_{\mathrm{u}}} \beta_{k} \mathbf{L}_{\mathbf{u}}^{k}$

- Efficient, distributed
- Expressive power (Cayley-Hamilton thm)
- Hodge-invariant operator
$\mathbf{H}_{1} \mathbf{x}_{1}=\mathbf{H}_{1 \mathrm{im}\left(\mathbf{B}_{1}^{\top}\right)} \mathbf{x}_{1, \mathrm{G}}+\mathbf{H}_{1 \mathrm{im}\left(\mathbf{B}_{2}\right)} \mathbf{x}_{1, \mathrm{C}}+\mathbf{H}_{1 \operatorname{ker}\left(\mathrm{~L}_{1}\right)} \mathbf{x}_{1, \mathrm{H}}$
Hodge subspaces are invariant under \mathbf{H}

Edge Convolutions on SCs

Pointwise Multiplication at frequencies

Spectral

$\begin{cases}\tilde{H}_{\mathrm{H}}(\lambda)=h_{0}, & \text { for } \lambda \in \mathbb{Q}_{\mathrm{H}}, \\ \tilde{H}_{\mathrm{G}}(\lambda)=h_{0}+\sum_{k=1}^{K_{d}} \alpha_{k} \lambda^{k}, & \text { for } \lambda \in \mathbb{Q}_{\mathrm{G}}, \\ \tilde{H}_{\mathrm{C}}(\lambda)=h_{0}+\sum_{k=1}^{K_{u}} \beta_{k} \lambda^{k}, & \text { for } \lambda \in \mathbb{Q}_{\mathrm{C}}\end{cases}$

- gradient freq. λ_{G} - curl freq. λ_{c} - harmonic freq. λ_{H}

$$
\begin{aligned}
& \left.\mathrm{H}_{1}\right|_{i m\left(B_{1}^{\top}\right)}: i m\left(\mathrm{~B}_{1}^{\top}\right) \rightarrow \operatorname{im}\left(\mathrm{B}_{1}^{\top}\right) \\
& \left.\left.\mathrm{H}_{1}\right|_{\lim \left(\mathrm{B}_{2}\right)}\right): \operatorname{im}\left(\mathrm{B}_{2}\right) \rightarrow \operatorname{im}\left(\mathrm{B}_{2}\right) \\
& \mathrm{H}_{1} \mid{ }_{\operatorname{ker}\left(\mathrm{L}_{1}\right)}: \operatorname{ker}\left(\mathrm{L}_{1}\right) \rightarrow \operatorname{ker}\left(\mathrm{L}_{1}\right)
\end{aligned}
$$

Convolutional Learning on SCs

Linear

$$
\mathbf{H}:=\mathbf{H}\left(\mathbf{L}_{\mathrm{d}}, \mathbf{L}_{\mathrm{u}} ; \boldsymbol{\alpha}, \boldsymbol{\beta}\right)=\sum_{k=0}^{K_{\mathrm{d}}} \alpha_{k} \mathbf{L}_{\mathrm{d}}^{k}+\sum_{k=0}^{K_{\mathrm{u}}} \beta_{k} \mathbf{L}_{\mathrm{u}}^{k}
$$

Non-Linear

Convolutional Learning on SCs

Node-edge-triangle interactions

Convolution based (Ebli et al. 2020; Roddenberry et al. 2021; Yang et al. 2022, 2023) Message passing (Bodnar et al. 2021)

Edge Gaussian Processes

Matérn GP family on SCs

- SPDEs on edge space of SCs using Hodge Laplacians

$$
\Phi\left(L_{1}\right) f_{1}=w_{1}, \quad w_{1} \sim \mathcal{N}(0, I)
$$

$f_{1} \sim \mathrm{GP}\left(0,\left(\frac{2 \nu}{\kappa^{2}}+L_{1}\right)^{-\nu}\right) \quad f_{1} \sim \mathrm{GP}\left(0, e^{-\frac{\kappa^{2}}{2} L_{1}}\right)$

$$
L f=(\operatorname{grad} \circ \operatorname{div}+\operatorname{curl} * \circ \operatorname{curl}) \mathrm{f}=0
$$

f is a 1 -form (vector field)

Hodge-compositional Edge GPs Div-free and curl-free edge GPs

$$
\begin{aligned}
& \text { (Spatial) }\left(\frac{2 \nu}{\kappa^{2}}+L_{1}\right)^{-\nu} \rightarrow\left(\frac{2 \nu}{\kappa^{2}}+\Lambda_{1}\right)^{-\nu} \text { (spectral) } \\
& \Psi_{\square}\left(\Lambda_{\square}\right)=\sigma_{\square}^{2}\left(\frac{2 \nu_{\square}}{\kappa_{\square}^{2}}+\Lambda_{\square}\right)^{-\nu_{\square}}, \quad \square=\mathrm{H}, \mathrm{G}, \mathrm{C}
\end{aligned}
$$

- They can be obtained from SPDEs on edges as well

$$
\Phi\left(L_{1, \mathrm{u}}\right) f_{1}=w_{1}, \quad w_{1} \sim \mathcal{N}\left(0, \sigma_{C}^{2} U_{C} U_{C}^{\top}\right)
$$

- Composition of three GPs on the Hodge subspaces
- Kernel: $K_{1}=K_{G}+K_{H}+K_{C}$

curl ${ }^{*} \circ$ curl $\mathrm{f}_{1}=\mathrm{w}_{1}$
Maxwell equations for H, incompressible flows

Conclusion

- Variation (smoothness) measures of edge flows: discrete div and curl
- Smoothness of node data $\mathbf{v}^{\top} \mathbf{L}_{0} \mathbf{v}$
- General simplicial data: variations w.r.t. faces and cofaces
- Hodge subspaces spanned by eigenbasis of Hodge Laplacians
- Principled processing, filtering, learning, modelings

Other applications of Hodge decomp.

Fig. 14: Top: The average connectivity (edge flow), non-loop flow (middle) and the loop flow (right) of the female (top) and male networks (bottom)

- Brain networks (Anand et al. 2022)

Full Eigenbasis of example SC

(a) $\boldsymbol{u}_{\mathrm{G}, 1}, \lambda_{\mathrm{G}, 1}(0.80)$

(f) $\boldsymbol{u}_{\mathrm{G}, 6}, \lambda_{\mathrm{G}, 6}(6.08)$

(b) $\boldsymbol{u}_{\mathrm{G}, 2}, \lambda_{\mathrm{G}, 2}(1.61)$

(g) $\boldsymbol{u}_{\mathrm{C}, 1}, \lambda_{\mathrm{C}, 1}(1.59)$

(c) $\boldsymbol{u}_{\mathrm{G}, 3}, \lambda_{\mathrm{G}, 3}(2.43)$

(h) $\boldsymbol{u}_{\mathrm{C}, 2}, \lambda_{\mathrm{C}, 2}(3.00)$

(d) $\boldsymbol{u}_{\mathrm{G}, 4}, \lambda_{\mathrm{G}, 4}(3.96)$

(i) $\boldsymbol{u}_{\mathrm{C}, 3}, \lambda_{\mathrm{C}, 3}(4.41)$

(e) $\boldsymbol{u}_{\mathrm{G}, 5}, \lambda_{\mathrm{G}, 5}(5.12)$

(j) $\boldsymbol{u}_{\mathrm{H}}, \lambda_{\mathrm{H}}(0)$

Spectrum of graph Laplacians

Learning for Forex

Table 1: Forex results (nmse|total arbitrage, \downarrow).

Methods	Random Noise	Curl Noise	Interpolation
Input	$0.119_{ \pm 0.004} \mid 29.19_{ \pm 0.874}$	$0.552_{ \pm 0.027} \mid 122.4_{ \pm 5.90}$	$0.717_{ \pm .030} \mid 106.4_{ \pm 0.902}$
Baseline (ℓ_{2} regularization)	$0.036_{ \pm 0.005} \mid 2.29_{ \pm 0.079}$	$0.05 \pm_{ \pm 0.002} \mid 11.12_{ \pm 0.537}$	$0.534_{ \pm 0.043} \mid 9.67_{ \pm 0.082}$
SNN (Ebli et al. 2020)	$0.110_{ \pm 0.005} \mid 23.24_{ \pm 1.03}$	$0.446_{ \pm 0.017} \mid 86.95_{ \pm 2.20}$	$0.702_{ \pm 0.033} \mid 104.74_{ \pm 1.04}$
PSNN (Roddenberry et al., 2021)	$0.008_{ \pm 0.001} \mid 0.984_{ \pm 0.170}$	$0.00 \pm_{ \pm 0.000} \mid 0.000_{ \pm 0.000}$	$0.009_{ \pm 0.001} \mid 1.13_{ \pm 0.329}$
MPSN (Bodnar et al., 2021b)	$0.039_{ \pm 0.004} \mid 7.74_{ \pm 0.88}$	$0.076_{ \pm 0.012} \mid 14.92_{ \pm 2.49}$	$0.117_{ \pm 0.063} \mid 23.15_{ \pm 11.7}$
SCCNN, id	$0.027_{ \pm 0.005} \mid 0.000_{ \pm 0.000}$	$0.00 \pm_{ \pm 0.000} \mid 0.000_{ \pm 0.000}$	$0.265_{ \pm 0.036} \mid 0.000_{ \pm 0.000}$
SCCNN, tanh	$\mathbf{0 . 0 0 2}{ }_{ \pm 0.000} \mid 0.325_{ \pm 0.082}$	$0.000_{ \pm 0.000} \mid 0.003_{ \pm 0.003}$	$0.003_{ \pm 0.002} \mid 0.279_{ \pm 0.151}$

Simplex prediction

Generalization of link prediction

Table 2: Simplex prediction (AUC, \uparrow) .

Methods	2-simplex	3-simplex
Mean (Benson et al., 2018)	62.8 ± 2.7	63.6 ± 1.6
MLP (Defferrard et al., 2016)	68.5 ± 1.6	69.0 ± 2.2
GNN (Di.9 2020)	92.0 ± 1.0	96.6 ± 0.5
SNN (Ebli et al., 20.8	95.1 ± 1.2	
PSNN (Roddenberry et al., 2021)	95.6 ± 1.3	98.1 ± 0.5
SCNN (Yang et al., 2022a)	96.5 ± 1.5	98.3 ± 0.4
Bunch (Bunch et al., 2020)	98.3 ± 0.5	98.5 ± 0.5
MPSN (Bodnar et al., 2021b)	98.1 ± 0.5	99.2 ± 0.3
SCCNN	$\mathbf{9 8 . 7} \pm \mathbf{0 . 5}$	$\mathbf{9 9 . 4} \pm \mathbf{0 . 3}$

GPs based on Node-edge-triangle interactions

- Derivatives of GPs are also GPs
- Induce edge GPs from node GPs and triangle GPs
- $K_{1}=K_{H}+B_{1}^{\top} K_{0} B_{1}+B_{2} K_{2} B_{2}^{\top}$
- Induce node GPs from edge GPs

GP based Forex prediction

True

GP based Ocean current analysis

GP based state estimation in Water supply networks

