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Simplicial Convolutions 
— an edge case
— Analysis of edge data (flows), difference vs. node data  
— Convolutions on edges: Spatial; Spectral 
— Processing and learning: Filters, NNs, …, GPs, …  
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Graphs vs Simplicial 2-Complexes

Simplicial 2-complexGraph = Simplicial 1-complex

0-, 1-, 2-, 3-simplices

-Oriented simplices (equivalence 
class of permutations)
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Simplicial Signals 
Signals on nodes, edges, triangles, … 

0.5

Node data Edge flows

-Alternating property

-Magnitude and sign

-Flow-type data (natural)

-Physical world: traffic flow, 

water flow, information flow… 

-Forex: exchange rates

-Game theory (Candogan et al. 2011)


-Ranking data (Jiang et al. 2011)


-Edge-based vector field 
discretisation (computer 
graphics)


-…

-Representation learning
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Simplicial complexes and Data in real world

Traffic flows (Jia et al. 2019) Water flows (Yang et al. 2023) 

Neuroscience (Anand et al. 2023):

1. Firing of neurons 

2. Activation of multiple brain regions

Foreign currency exchange (Jiang et al. 2011)

Others:

- Currents/Voltage in electric circuits/grid  

- Game theory (Candogan et al. 2011)

- Ranking theory (Jiang et al. 2011)

- Information flows 

…

- Discrete vector fields
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Algebraic reps. of simplicial 2-complex
Incidences & Laplacians

Node-to-Edge
Edge-to-Faces

Graph Laplacian:   

1-Hodge Laplacian:     

L0 = B1B⊤
1

L1 = B⊤
1 B1 + B2B⊤

2 := L1,d + L1,u

Down

Up
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Incidence & Laplacians
1st and 2nd order Discrete Derivatives 

[B1f][i] = ∑
j<i

f[ j,i] − ∑
i<k

f[i,k]

, for [B⊤
2 f]t = f[i,j] + f[ j,k] − f[i,k] t = [i, j, k]

[fG][i,j] = [B⊤
1 v][i,j] = [v]j − [v]iGradient of node signal:

Divergence of edge flows:

Curl of edge flows:

[B⊤
1 v][1,2] = − 1.34 − 0.96 = − 2.30

-Node signal 

-Edge flows 

v
f
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Incidence & Laplacians
1st and 2nd order Discrete Derivatives 

[fG][i,j] = [v]j − [v]iGradient of node signal: B⊤
1 v

[B⊤
2 f][1,2,3] = − 1.2 + 1.8 − (−2.9) = 3.5

[B1f]5 = 0.5 + 2.6 − (0.9 + 2.6) = − 0.4
Hodge Laplacian: 
L1 = B⊤

1 B1 + B2B⊤
2

Δ1 = ∇(∇ ⋅ ) + ∇ × (∇ × )

Laplacians = Grad Div + Curl* Curl

[B1f][i] = ∑
j<i

f[ j,i] − ∑
i<k

f[i,k]

, for [B⊤
2 f]t = f[i,j] + f[ j,k] − f[i,k] t = [i, j, k]

Divergence of edge flows:

Curl of edge flows:
Net-flow = in_flow - out_flow

Net-circulation in triangles
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A Circuit toy example

(Grady et al. 2010)

v_1
v_4

v_2
v_3 v_5

1

0.5 0.25

1 1

v_vol_source

: Electric potential on nodes


: (Kirchhoff’s voltage law)


: currents (Ohm’s law)

v ∈ ℝ|𝒩|

fVol = B⊤
1 v

fcurrents = G−1fVol
Diagonal resistance/conductance

Kirchhoff’s current law: 


Or  

B1fcurrents = 0

B1fcurrents + vcurr source = 0

v_curr_source

B1 =

1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 1
0 −1 0 −1 0
0 0 0 0 −1

e_1 e_2

e_3

e_4

e_5

vvol =

v1
v2
v3

2
0

B1G−1B⊤
1 vvol + vcurr source = 0
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Hodge decomposition
Lovász et al. 2004; Lim et al. 2020

 
    ℝN1 = im(B⊤

1 ) ⊕ ker(L1) ⊕ im(B2)

⊕⊕=

Gradient flow

Curl-free, irrotational

Harmonic flow

Div- and curl-free

Curl flow

Div-free, solenoidal

x1

- This holds for any simplex order 


- What is the case for ? 


- Characteristic decomposition 

k

k = 0

** *

q ↑ ↳⑰ -⑳⑳⑳- Y qy va
oYy
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Applications of Hodge decomposition

Chen, Yu-Chia et al. (2021) ”Helmholtzian Eigenmap." 

Gradient flow

Curl-free, irrotational

Curl flow

Div-free, solenoidalOcean currents 

6.9579

EUR

USD

CNY

0.9930

0.1447

Arbitrage: 
0.9930 

ra/brb/c = ra/c

f[a,b] + f[b,c] − f[a,c] = 0

Arbitrage-free 

Curl-free 

- Brain networks (Anand et al. 2022)

- Game theory (Candogan et al. 2011)

- Ranking problems (Jiang et al. 2011)

- Random walks (Strang et al. 2020)

- …

Forex
- Water flows (div-free)

- Electrical currents,  

voltages 
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Eigenspace of  spans Hodge subspacesL1

λG,1 = 0.80 λG,2 = 1.61

λG,5 = 5.12 λG,6 = 6.08

λC,1 = 1.59 λC,2 = 3.00

λC,3 = 4.41 λH,1 = 0

k = 1

- Nonzero Eigenspace of down Laplacian spans the gradient space 

- Nonzero Eigenspace of up Laplacian spans the curl space 

- Kernel of Laplacian spans the harmonic space 

Simplicial Fourier transform 
Frequency — eigenvalues

Fourier basis — eigenvectors 

Curl eigenvector

Fourier basis reflecting rotational properties 





 

x̃k = U⊤
k xk

x̃k = [x̃⊤
k,H, x̃⊤

k,G, x̃⊤
k,C]

λG = ∥B1uG∥2
2 λC = ∥B⊤

2 uC∥2
2

Gradient eigenvector

Fourier basis reflecting divergent properties
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Eigenspace spans Hodge subspaces
- Down Laplacian, its nonzero eigenspace spans the gradient space 


- Up laplacian, its nonzero eigenspace spans the curl space 

, more divergentλG

, more rotationalλC
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Edge Convolution
Shift-and-Sum

L1,dx1 L2
1,dx1

L1,ux1

L2
1,ux1

Simplicial 
shifting

x1

[L1,df]i = ∑
j∈{𝒩1,i∪i}

[L1,d]ij[f]j Simplicial 
locality

Convolutional filter

Spatial/Topological

- Efficient, distributed


- Expressive power (Cayley-Hamilton thm)


- Hodge-invariant operator

     H1x1 = H1 |im(B⊤
1 ) x1,G + H1 |im(B2)

x1,C + H1 |ker(L1)
x1,H

H := H(Ld, Lu; α, β) =
Kd

∑
k=0

αkLk
d +

Ku

∑
k=0

βkLk
u

Hodge subspaces are invariant under H
15



Edge Convolutions on SCs
Pointwise Multiplication at frequencies

d
u

C

C,G,2=

G

H

C

G

H

C

d G d u C u

H

Figure: An illustration of the Hodge-aware learning of SCCNN. Specifically, we show how a given edge flow , and
lower and upper contributions, dand u, are transformed by SCCNN in the spectral domain. More importantly, we
demonstrate the implicitstep of in the green dashed area, which reflects the Hodge-aware learning:
1. The Hodge subspaces being -invariant: each component is learned in their own subspace. Informally, does
not "mix" the Hodge subspaces;
2. The learning in the gradient and curl spaces are independent (blue and orange curves), as no shared parameters
are used in two spaces (a non-independent learner would not able to separately learn features at and ); and
3. The learning operators are expressive: the spectral responses are as expressive as any analytical functions (blue
and orange cuves) in the gradient and curl frequencies

=

ker

im

im im
u

im im
d

im im

im im im

im im im
ker ker ker

C,G,2=

im

im

ker

G

G C

d
u

ker

im

Spectral



H̃H(λ) = h0, for λ ∈ 𝒬H,

H̃G(λ) = h0 + ∑Kd
k=1 αkλk, for λ ∈ 𝒬G,

H̃C(λ) = h0 + ∑Ku
k=1 βkλk, for λ ∈ 𝒬C
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Convolutional Learning on SCs

H := H(Ld, Lu; α, β) =
Kd

∑
k=0

αkLk
d +

Ku

∑
k=0

βkLk
u

G
C

G, G, G, GC, C, C, C

Hodge Lap. smoothing

G, =

Linear

Non-Linear
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Convolutional Learning on SCs
Node-edge-triangle interactions

Convolution based (Ebli et al. 2020; Roddenberry et al. 2021; Yang et al. 2022, 2023)

Message passing (Bodnar et al. 2021)
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Edge Gaussian Processes 
Matérn GP family on SCs

• SPDEs on edge space of SCs using Hodge 
Laplacians 



Φ(L1) f1 = w1, w1 ∼ 𝒩(0,I)

f1 ∼ GP(0, ( 2ν
κ2

+ L1)
−ν

) f1 ∼ GP(0, e− κ2
2 L1)




 is a 1-form (vector field)

Lf = (grad ∘ div + curl* ∘ curl) f = 0

f

Diffusion on nodes vs on edges
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Hodge-compositional Edge GPs
Div-free and curl-free edge GPs

(Spatial) (spectral)





• They can be obtained from SPDEs on edges as well 





• Composition of three GPs on the Hodge subspaces 


• Kernel: 

( 2ν
κ2

+ L1)
−ν

→ (2ν
κ2

+ Λ1)
−ν

Ψ□(Λ□) = σ2
□(

2ν□

κ2
□

+ Λ□)
−ν□

, □ = H, G, C

Φ(L1,u) f1 = w1, w1 ∼ 𝒩(0,σ2
CUCU⊤

C )

K1 = KG + KH + KC



Maxwell equations for ,

incompressible flows

curl* ∘ curl f1 = w1
H

0 10
0

1
™G, ∫G = 2.5, ∑G = 1.5

™C , ∫C = 0.5, ∑C = 1.0

™H , æ2
H = 0.3

0 10
0

1
™, ∫ = 0.5, ∑ = 1.0
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Conclusion 
• Variation (smoothness) measures of edge flows: discrete div and curl 


• Smoothness of node data 


• General simplicial data: variations w.r.t. faces and cofaces


• Hodge subspaces spanned by eigenbasis of Hodge Laplacians


• Principled processing, filtering, learning, modelings 

v⊤L0v
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Other applications of Hodge decomp.

- Brain networks (Anand et al. 2022)

- Ranking problems (Jiang et al. 2011)

- Condorcet paradox: cyclic
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Full Eigenbasis of example SC
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Shuman et al. (2013)  

Spectrum of graph Laplacians 
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Learning for Forex
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Simplex prediction
Generalization of link prediction 
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GPs based on Node-edge-triangle interactions 
• Derivatives of GPs are also GPs


• Induce edge GPs from node GPs and triangle GPs


• 


• Induce node GPs from edge GPs 

K1 = KH + B⊤
1 K0B1 + B2K2B⊤

2
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GP based Forex prediction

True Predicted

Std
non-Hodge

Learned kernels
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GP based Ocean current analysis
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GP based state estimation in Water supply networks
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