Maosheng Yang

🕈 Google Scholar 🖓 <u>Github</u> 🚸 <u>Personal Website</u> 🛅 <u>LinkedIn</u> 💌 m.yang-2@tudelft.nl

PERSONAL PROFILE

I enjoy and appreciate the opportunity of doing research. Over the years, I have developed *signal processing and machine learning methods mainly on simplicial complexes* for *flow-type data* in networks. My current research interests include: learning on geometry and topology domains, physics-based learning, statistical learning, generative models, as well as application topics for physics problems, climate science and so on.

EDUCATION

Delft University of Technology	Aug. 2025
Ph.D. candidate; Dept. Intelligent Systems; Advisor: Elvin Isufi, Geert Leus	
Delft University of Technology	Aug. 2020
M.Sc. (Cum laude); Electrical Engineering, Advisor: Mario Coutiño, Elvin Isufi, Geert Leus	GPA:9+/10
Beijing Jiaotong University	June. 2018
B.Sc.; Electrical Engineering	GPA: 93/100

Research Publications

Hodge-compositional Edge Gaussian Processes | paper, code | Artificial Intelligence and Statistics (AISTATS), 2024

- Maosheng Yang, Viacheslav Borovitskiy, Elvin Isufi.
- Built principled Gaussian processes on simplicial complexes based on *combinatorial Hodge theory*
- Applied the proposed method in Foreign Currency Exchange, Ocean Currents and Water Supply Networks

Convolutional Learning on Simplicial Complexes | paper, code | Preprint, 2023

- Maosheng Yang, Elvin Isufi.
- Proposed a general convolutional learning framework for data in simplicial complexes, including node data, edge flows, triangle data and so on
- Theoretical analysis of the framework, including locality and symmetry, spectral analysis based on Hodge decomposition and stability analysis
- Applied in currency exchange, triangle and tetrahedron predictions, and trajectory prediction
- Implemented our model in the open source module TopoModelX for topological deep learning.

Online Edge Flow Prediction Over Expanding Simplicial Complexes | paper | ICASSP, 2023

- Maosheng Yang, Bishwadeep Das, Elvin Isuf.
- Designed algorithms for predicting edge flows when the underlying topology is growing.

Simplicial Convolutional Filters | paper | IEEE Transactions on Signal Processing, 2022

- Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus.
- Proposed spectral methods for signals defined on simplicial complexes, based on discrete calculus
- Built the convolutional filters for simplicial complexes based on the Hodge decomposition
- Chebyshev polynomial filter implementation

Simplicial Trend Filtering | paper | Asilomar, 2022

- Maosheng Yang, Elvin Isufi.
- Proposed trend filtering methods for edge flows on simplicial complexes

Convolutional Filtering in Simplicial Complexes | paper | ICASSP, 2022

- Maosheng Yang, Elvin Isufi.
- Joint convolutional filters for signals on simplices of different orders, e.g., node signal, edge flow, triangle signal

Simplicial Convolutional Neural Networks | paper, <u>code</u> | ICASSP, 2022

- Maosheng Yang, Elvin Isufi and Geert Leus.
- Designed a neural network based on simplicial convolutional filters for learning from data on simplices of one certain order, e.g., edge flows, which returns to graph convolutional neural networks for node data
- Implemented the proposed model in the open source module TopoModelX

Finite Impulse Response Filters for Simplicial Complexes | paper | EUSIPCO, 2021

• Maosheng Yang, Elvin Isufi, Michael T. Schaub, Geert Leus.

• Early work on filtering data on simplices of one certain order (several neural network papers perform convolutions based on this method)

Topological Volterra Filters | paper | ICASSP, 2021

• Geert Leus, Maosheng Yang, Mario Coutino, Elvin Isufi.

Node-Adaptive Regularization for Graph Signal Reconstruction | paper | IEEE OJSP, 2021
 Maosheng Yang, Mario Coutino, Geert Leus, Elvin Isufi.

Node varying regularization for graph signals | paper | EUSIPCO, 2020

• Maosheng Yang, Mario Coutino, Geert Leus, Elvin Isufi.

Academic Work

 Participation in the open source project TopoModelX
 | software paper
 July 2023

 TopoModelX is a Python module for topological deep learning, where two models in our papers were implemented.
 Check the related overview paper 1 and paper 2.

Reviewer for signal processing and machine learning journals and conferences

Reviewed for journals: IEEE TSP, TSIPN, SPL, TNNLS and conferences: ICASSP, EUSIPCO, SampTA, ICML, NeurIPS.

Co-authored a tutorial book on machine learning on graphs

Used as materials for two master courses in TU Delft

Bachelor and master graduation project supervision

Supervised two projects involving ten bachelor students on topics of recommender systems and deep neural networks, one master project on topological unrolling networks

2022 - present

Talks and Workshops

– DeepK – workshop on deep learning and kernel machines, (Mar 2024, oral presentation)

- Talk on Simplicial Convolutions in AMLab, Amsterdam (Feb 2024)
- Learning on graphs, Amsterdam (Nov 2023); ICASSP (June 2023)
- Workshop on Machine learning and signal processing on graphs, CIRM, France (Nov 2022)

OTHERS

Awards	
Master study scholarship	2018 - 2020
Faculty scholarship by Microelectronics department of TU Delft (total amount of 50,000 euros)	
Academic Excellence Scholarship in Beijing Jiaotong University	2015 - 2018

Skills

Languages: Python, Matlab, Julia (beginner), LATEX Tools: PyTorch, Jax, Git/GitHub, scikit-learn, chebfun, Gudhi, etc

HOBBIES

Cycling, bouldering, movies, gaming, museums