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Summary

Machine learning has been growing beyond data living on Euclidean spaces (e.g., texts,
audios, images). Graph machine learning models, e.g., graph neural networks (GNNs),
succeed in learning from graph-structured data using the graph topological information.
In this thesis, we focus on a new domain, simplicial complexes. Not only are they a popular
higher-order network model that generalizes graph models encoding pairwise relations
between nodes, but they also allow us to support signals on various network objects (nodes,
edges, and faces). For example, edge flows defined on a simplicial complex can be studied in
terms of both divergent and rotational properties, providing a better model for real-world
flows like traffic flows, water flows, money flows, etc.

The main theme of the thesis is to develop principled machine learning models for signals on
simplicial complexes. By principled, we mean that the models leverage the intrinsic priors
of the domain and the signals, namely, the topological structure of simplicial compelxes
and the Hodge decomposition of simplicial signals. The latter states that, for example, edge
flows can be decomposed into a divergence-free part and a curl-free part, each modeling
the distinct properties of real-world flows — the conservation of flows (e.g., water flows)
and the rotational properties of flows (e.g., electric currents).

We start by defining a simplicial convolution operator. In analogy to the classical convolution
operator in Euclidean spaces, the simplicial convolution acts as a fundamental tool for signal
processing, and a building block for learning on simplicial complexes. Spatially, it performs a
shift-and-sum operation within the local simplicial neighborhoods. Spectrally, we show that
this operator regulates the different Hodge subspaces individually, allowing for a flexible
control on the different Hodge components of the signals. Inspired by convolutional neural
networks (CNNs) and GNNs, we then build neural network models on simplicial complexes
based on the convolution operator. These models allow us to perform reconstruction,
classification and regression tasks on simplicial signals, yet in a deterministic sense.

To enable probabilistic learning of simplicial signals, we later construct Gaussian processes
on simplicial complexes owing to its Gaussian nature. We achieve the separate model-
ing of different Hodge components by once again leveraging the Hodge decomposition.
Finally, we investigate the fundamental challenge of matching arbitrary distributions of
simplicial signals for generative learning on simplicial complexes. By generalizing the
classical Schrödinger bridge problem—a dynamic entropy-regularized optimal transport—to
simplicial complexes, we formulate the topological Schrödinger bridge problem with respect
to a topology-aware reference process (e.g., topological heat diffusion). The solution to this
problem allows us to build topological Schrödinger bridge models for generative learning
and matching of simplicial signals.

We have evaluated these models on networks involved with edge flows, such as road/water
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networks, collaboration networks, financial networks, brain networks and so on. Across
various tasks, we show the effectiveness of the proposed models and the importance of
leveraging both the topological structure and the Hodge decomposition of simplicial signals.
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Symbols
Sets

• G: a graph

• SC2: a simplicial 2-complex (this is a set)

• V : a set of nodes/vertices

• E : a set of edges

• F : a set of faces, or T : a set of triangular faces

• 1,2, . . . ,N0: nodes in V and N0: the number of nodes

• e1,e2, . . . ,eN1 : edges in E and N1: the number of edges

• t1, t2, . . . , tN2 : faces in F and N2: the number of faces

• S := ∪kSk: a set of simplices for k = 0, . . . ,K

• Sk: a set of k-simplices and Nk := |Sk| the number of simplices

• sk
1 ,s

k
2 , . . . ,s

k
Nk

: simplices in Sk

• N : a set of neighbors

Signals

• xk: k-simplicial signals

• v = [v1, . . . ,vN0 ]⊤ ∈ RN0 : node signals

• f = [f1, . . . ,fN1 ]⊤ ∈ RN1 : edge flows

• t = [t1, . . . , tN2 ]⊤ ∈ RN2 : triangle flows

• Xk ∈ RNk×D : D-dimensional k-simplicial signals

Operators
• ker(·): the kernel space of a matrix (linear operator).

• im(·): the image space of a matrix (linear operator).

• I: identity matrix of appropriate size.

• Bk: the incidence matrix between (k−1)- and k-simplices, a.k.a., the k-th boundary
operator. The transpose B⊤

k is the coboundary operator.

• B1: the node-edge incidence matrix of size N0×N1.
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• B2: the edge-triangle incidence matrix of size N1×N2.

• Lk: the k-th Hodge Laplacian operator. Sometimes, we denote the 1-Hodge Laplacian
as L for brevity. L0 is the graph Laplacian.

• Lk,d is the down (or lower) Laplacian and Lk,u is the up Laplacian.

• Lk = UkΛkU⊤
k : the eigendecomposition of the k-th Hodge Laplacian. Uk =

[u1, . . . ,uN1 ]⊤ is the eigenvector matrix and Λk = diag([λ1, . . . ,λN1 ]) is the eigen-
value diagonal matrix, where (λi,ui) is the i-th eigenpair.

• Hk: the k-th simplicial convolutional filter. H0: graph filters. H1: edge filters,
sometimes, breviated as H.

• Subscripts ·H, ·G, ·C denote mathematical objects associated with the harmonic, gra-
dient and curl subspaces, respectively, given by the Hodge decomposition.
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1
Introduction

In the past few years, we have witnessed a surge of interest in developing machine learning
models for various types of data. By various types, we mean that the data can be of different
nature. For example, audios, images, videos, etc., are often referred to as regular data, as
in data defined over regular domains, because they are often mathematically treated as
signals over a 1-dimensional (1D) time span, a 2-dimensional (2D) image grid, and so on,
and they are thus known as Euclidean data. In contrast, irregular data, or non-Euclidean
data, refers to the data defined over, or associated with, irregular domains, such as graphs,
groups, manifolds and other non-Euclidean domains. The success of machine learning
models to extract patterns from these data is then to exploit their local relationships and
the invariants of the underlying domain.

Among them, graphs are simple and general topological structures, composed of a set of
nodes and edges connecting the nodes that can be used to capture the local relationships
between data points. Note that 1D discretized timepoints and 2D image grids can be viewed
as special graphs, as shown in Fig. 1.1. The graph in Fig. 1.1c has seven nodes ({1,2, . . . ,7})
and ten edges ({e1, . . . ,e10}), where, e.g., e1 connects nodes 1 and 2. Graphs have been
used to model many real-world applications associated to networked systems where nodes
represent entities and edges represent relationships or interactions between these entities.
For instance, a social network can be modeled as a graph where users are represented
as nodes and their relationships are represented as edges; a sensor network is a graph
composed of sensors and their closeness as edges; and a molecule can be represented as
a graph where atoms are nodes and bonds are edges. This representation allows various
graph-based methods to process related graph data and perform downstream tasks such as
classifying malicious users in the social network, route planning in road networks, and
classifying molecules.

In these applications, the networked graph data often refers to data (or signals) associated
with the nodes of a graph, as shown in Fig. 1.1d. In a sensor network, the sensor measure-
ments at a timestamp may be modeled as a node signal. The node signal could also be
the user profiles in a social network, or the atom properties in a molecule. In addition to
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(a) 1D time span. (b) 2D image grid.

(c) graph. (d) node signal.

Figure 1.1: Discretized time span and image grid can be viewed as special graphs.

node signals, networked data can also be associated with the edges in a network. Such edge
data may represent dynamic processes with both magnitudes and orientations, such as
energy flows in power grids [Jia et al., 2019] or synaptic signals between neurons in brain
networks [Faskowitz et al., 2022]. In financial markets, currencies can be modeled as nodes
and exchange paths as edges, with exchange rates viewed as signals on the edges [Jiang
et al., 2011]. Thus, we also call them edge flows. Sometimes, we have both node data and
edge flows. Consider a water supply network, as shown in Fig. 1.2, where the nodes (tanks)
have the water pressure or head data, and the edges (pipes) support the water flow rates.

Source

1

2

3

4

Head

2.0 1.5 1.0 0.5 0.0 0.5 1.0

Flow

Figure 1.2: A water supply network with node data (water pressure/head) and edge data (water flow).

The recent development of machine learning for networked data revolves around the
node data. Graph neural networks are among the most outstanding methods for graph
machine learning. While there are many forms of graph neural networks, they are generally
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developed from themost modest form of graph convolutional networks (GCNs) [Bruna et al.,
2013; Defferrard et al., 2016; Duvenaud et al., 2015; Kipf & Welling, 2017]. The fundamental
idea of GCNs is to generalize the convolution operation from regular Euclidean domains
to the graph domain. Essentially, the graph convolution is a local, learnable and linear
transformation. It aggregates data from the neighboring nodes of each node, weighted by
learnable parameters. This utilizes the topological structure encoded in the graph model to
learn the node representations such that GCNs serve as a general framework for various
graph-based tasks, such as node classification, link prediction, and graph classification.

The concept of convolution has long been fundamental in the field of classical signal
processing. Similarly, in graph signal processing [Shuman et al., 2013], graph convolution
based on the graph Laplacian has been better understood under the help of spectral graph
theory [Chung, 1997]. This generalizes the notion of frequency to the graph domain, i.e.,
graph frequency, and allows for the construction of signal processing tools like graph filters
[Sandryhaila & Moura, 2013; 2014]. Notably, the graph convolutions in the aforementioned
GCNs are closely related to the graph convolutional filters [Gama et al., 2020b; Isufi et al.,
2024]. In short, the graph convolutional filters are the building blocks of GCNs, and they
are the key to the success of GCNs in various graph-based tasks. Here, we refer readers to
the recent work of Isufi et al. [2024] which offers a comprehensive review of graph filters
for graph signal processing and graph machine learning.

In this thesis, we go beyond graphs and node signals. First, we focus on a more general
network model, namely, simplicial complexes. Simplices can be viewed as sets of vertices
along with a relational structure. A 0-simplex is a node, a 1-simplex is an edge, a 2-simplex
is a triangular face (triangle), and so on. To put it simply, a simplicial complex is a collection
of simplices, where each subset of the simplices is also included in the complex. Graphs,
also known as simplicial 1-complexes, are then a special case of simplicial complexes where
only 0-simplices (nodes) and 1-simplices (edges) are present. The connectivity between
nodes can be encoded in the graph adjacency matrix, indicating if two nodes are connected,
and the relationships between nodes and edges are stored in the node-edge incidence matrix,
showing which two nodes form the boundaries of an edge. A simplicial 2-complex is then
a generalization of a graph where 2-simplices (triangles) are also present. To represent
the richer topological structure, in addition to the graph representations, we also need
the higher-order (edge-triangle) incidence matrices, showing which three edges form the
boundaries of a triangle.

Secondly, instead of node signals, we focus on signals associated with the simplices of a
simplicial complex, namely, simplicial signals. Node signals and edge flows are then also
called 0- and 1-simplicial signals. To accommodate the directional information of simplicial
signals, e.g., edge flows, we may additionally assign an orientation to each simplex in the
complex, i.e., an ordering of the vertices. For an edge e= {i, j}, we choose the orientation
as e= [i, j] for i < j. For a triangle t= {i, j,k}, we choose the orientation as t= [i, j,k]
for i < j < k. This provides a reference for the signal directions on simplices with respect
to their chosen orientation — if the signal value is positive, it is then aligned with the
orientation; otherwise, it is against the orientation.

We refer to Fig. 1.3 for an oriented simplicial 2-complex and an edge flow. Compared to the
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(a) simplicial 2-complex. (b) edge flow.

Figure 1.3: An oriented simplicial 2-complex and an edge flow signal.

graph in Fig. 1.1c and the node signal in Fig. 1.1d, the simplicial 2-complex includes also
triangles (shaded in green) and the additional chosen orientations for edges (and triangles,
denoted by arrows) to indicate the directions of each edge flow signal. Out ultimate goal is
to exploit this more complex local and structual information between the signal elements
to enable machine learning tasks.

1.1 Early Works
By the beginning of this PhD project, the research on simplicial complexes and simplicial
signals was still in its infancy. Yet, a few works among others laid noteworthy foundations
to enable our research. Grady & Polimeni [2010]; Lim [2020]; Lovász [2004] first introduced
the notions of gradient, divergence and curl operators on simplicial complexes, which are
closely related to the algebraic representations (specifically, the incidence matrices) of
topological structures in the simplicial complexes. These first-order discrete derivative
operators enable us to perform fundamental calculus on simplicial complexes and, more
importantly, make the celebrated Hodge decomposition theory applicable to simplicial
signals. When it comes to edge flows, this decouples the flow into divergence-free and
curl-free components — the former has the property that the flow is conserved at each
node, meaning that the total in-flow equals the total out-flow at each node; and the latter
has the property of being irrotational, namely, the flow does not circulate around any loop
(triangles). This decomposition plays an important role in real-world applications. For
example, in circuit networks, the electric current respects the Kirchhoff’s current law,
being divergence-free, while the electric voltage respects the Kirchhoff’s voltage law, being
curl-free [Grady & Polimeni, 2010]. Similarly, water flows in water supply networks respect
the conservation of mass, being divergence-free [Zhou et al., 2022]. Jiang et al. [2011] also
introduced this decomposition to analyze the statistical ranking problem, and interpreted
exchange rates respecting the arbitrage property in foreigen currency exchange markets
as curl-free edge flows. The Hodge decomposition also finds its application in the analysis
of game theory problems [Candogan et al., 2011], and in various other fields, e.g., brain
networks [Vijay Anand et al., 2022], health care delivery networks [Gebhart et al., 2021]
and finance networks [Fujiwara & Islam, 2020; Wand et al., 2024].

Moreover, the signal processing work on simplicial complexes was initiated by Barbarossa
& Sardellitti [2020]; Barbarossa et al. [2018] where the notions of simplicial signals and
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simplicial Fourier transform were introduced. Early works of Jia et al. [2019]; Schaub &
Segarra [2018] investigated the signal processing tasks of flow smoothing, denoising and
interpolations in the context of graphs. In analogy to how graph Laplacians underpin
graph signal processing, these works are built upon the Hodge Laplacian—a generalization
of the graph Laplacian to simplicial complexes, constructed from the incidence matrices.
These works pioneer the signal processing from graphs to simplicial complexes, and drive
the follow-up research on general signal processing and machine learning on simplicial
complexes, including this thesis. Note that in parallel to our development, a branch of
graph neural networks started looking into leveraging topological structures for graph
machine learning tasks like graph or node classification [Bodnar et al., 2021b; Bunch et al.,
2020; Ebli et al., 2020; Roddenberry & Segarra, 2019]. These works mainly generalize
the convolution or message-passing scheme directly from graphs to simplicial complexes,
without considering the Hodge decomposition of simplicial signals.

1.2 Research Goals and Contributions
In this thesis, with the goal of developing tools for signal processing and machine learning
on simplicial complexes, we aim to provide researchers and practitioners with a principled
framework for modeling, analyzing, processing and learning from the networked simplicial
data—such as aforementioned edge flows arising from real-world applications. They should
allow for downstream tasks like denoising, interpolation and predictions on simplicial
complexes, going beyond node signals on graphs. However, while simplicial complexes
offer a richer topological structure than graphs and simplicial signals enjoy more flexibility
than node signals owing to the Hodge decomposition, they also pose new challenges
compared to graph signal processing and machine learning that necessiate a different
perspective. This in turn motivates the design of principled and flexible tools for simplicial
signals that not only leverage the topological structure of simplicial complexes, but also
respect the Hodge decomposition of simplicial signals. To this end, we address the following
four research questions.

1 How to process simplicial signals efficiently to achieve a desired output by leveraging
the simplicial topology and the Hodge decomposition?

This is addressed in Chapter 2, which is based on Yang et al. [2021; 2022b]:

• Maosheng Yang, Elvin Isufi, Michael T. Schaub, and Geert Leus. Finite Impulse
Response Filters for Simplicial Complexes. In 29th European Signal Processing Conference
(EUSIPCO), 2021.

• Maosheng Yang, Elvin Isufi, Michael T. Schaub, and Geert Leus. Simplicial Convolu-
tional Filters. IEEE Transactions on Signal Processing, 2022.

We develop the simplicial convolution operation by leveraging both the simplicial topology
and the Hodge decomposition. Specifically, we construct the simplicial convolutional filters
to process simplicial signals in an efficient manner—by aggregating information within local
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simplicial neighborhoods. More importantly, simplicial convolution has a clear spectral
interpretation. Upon building the simplicial Fourier transform in terms of the Hodge
decomposition, we analyze the frequency responses of the filters, and show that they are
able to regulate the different Hodge components of the signals individually. This allows
us to design filters that can preserve certain Hodge components for edge flows that are
either divergence-free or curl-free. Simplicial convolution enjoys not only the locality and
desired efficiency in the spatial domain, but also flexible and interpretable properties in the
spectral domain, respecting the convolution theorem in classical signal processing. Similar
to the role of any convolution, it lays the foundation for building more advanced signal
processing tools, and allows for the design of convolutional neural networks for learning on
simplicial complexes.

Simplicial convolutional filters perform however a limited linear operation. Having wit-
nessed the success of learning models in various domains, e.g., neural networks, we are
motivated to design more powerful learning models on simplicial complexes.

2 How to perform efficient and interpretable learning on simplicial complexes?

This is addressed in Chapter 3, which is based on Isufi & Yang [2022]; Yang & Isufi [2023]:

• Maosheng Yang, Elvin Isufi, and Geert Leus. Simplicial Convolutional Neural Networks.
In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022.

• Maosheng Yang, Elvin Isufi, and Geert Leus. Hodge-Aware Convolutional Learning on
Simplicial Complexes. arXiv, 2023.

We propose convolutional neural networks for learning on simplicial complexes, which
are built upon composing multi-layer simplicial convolutions with nonlinear activation
functions. Inheriting the properties of simplicial convolutions, the proposed models are
efficient since the learning is performed within local simplicial neighborhoods, and inter-
pretable since the learned is independent in different Hodge subspaces and able to capture
the different Hodge components, namely, Hodge-aware. They are flexible to perform
learning across simplices of different orders, e.g., nodes, edges and triangles, incorporating
the inter-simplicial interactions. We also investigate the robustness of the models against
perturbations in the simplicial topology, showing that they are stable to small perturbations.
These models offer a principled design to convolutional learning on simplicial complexes,
demonstrating strong performance across various applications, including financial markets,
simplex prediction and trajectory prediction.

The first two research questions focus on the deterministic method for processing and
learning on simpplicial complexes. However, often learning benefits from probabilistic
methods because they account for the uncertainty in the data and model, offer more
interpretability to model performance, and allow for uncertainty quantification. One
fundamental and tractable approach that provides probabilistic insight into learning is to
rely on Gaussian process modeling. Existing works however do not leverage the topology
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and it remains unclear how to incorporate this topological prior into the modeling of
simplicial signals. This leads to the following question.

3 How to model simplicial signals using Gaussian processes and perform learning?

This is addressed in Chapter 4, which is based on Yang et al. [2024]:

• Maosheng Yang, Viacheslav Borovitskiy, and Elvin Isufi. Hodge-Compositional Edge
Gaussian Processes. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2024.

We construct simplicial Gaussian processes as random functions defined over simplices,
where any collection of these function values follows a multivariate Gaussian distribution.
We can then view simplicial signals such as edge flows as samples from such a Gaussian
process. We detail the formulation ofMatérn Gaussian processes, where the diffusion instant
is associated with the heat diffusion on simplicial complexes. To capture the practical
properties of real-world edge flows being either divergence-free or curl-free, we further
build the Gaussian processes as a composition of three, each only modeling a specific
part given by the Hodge decomposition. This allows us to perform separate learning of
different Hodge components. We demonstrate their performance in financial markets,
ocean current analysis and water supply networks, bringing new approaches with both
performance and interpretability to these applications. Our construction not only extends
the framework of Gaussian processes for irregular domains, but also provides a principled
way of probabilistic modeling of simplicial signals that respects the Hodge decomposition.

Given the previous probabilistic view of simplicial signals, we consider the more chal-
lenging task of matching two simplicial signal distributions. Distribution matching is
the fundamental problem in generative modeling, which aims to learn a transformation
from one data distribution to another for efficient sampling and inference. When one
is a noise distribution, this promotes the generative modeling of simplicial signals and
tackles the lack of lagre amount of labeled data in real-world applications. In the case of
two data distributions, this allows us to learn a transport map between simplicial signals,
providing insights to, for example, how divergence-free edge flows transform to curl-free
flows. Therefore, we are interested in the following question.

4 How to perform topology-aware generative learning of simplicial signals?

This is addressed in Chapter 5, which is based on Yang [2025]:

• Maosheng Yang. Topological Schrödinger Bridge Matching. In The Thirteenth Interna-
tional Conference on Learning Representations (ICLR), 2025.

We consider the Schrödinger bridge problem, originated from Schrödinger’s gas experi-
ments [Schrödinger, 1931; 1932], which seeks the most likely random evolution between
two boundary distributions with respect to a reference process. It is a dynamic version
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of the optimal transport between two distributions [Villani, 2009]. In the calssical setting,
the reference process is a Brownian motion. Schrödinger bridge based methods have been
used in image generation and image-to-image translation, which unify other alternatives
such as the popular score matching and flow matching based methods [Chen et al., 2022b;
De Bortoli et al., 2021; Lipman et al., 2022; Song et al., 2020b].

We adapt the problem to graphs and simplicial complexes, referred to as topological
Schrödinger bridge problem, where we set the reference to be driven by the simplicial con-
volution, which is topology-aware, linear and tractable e.g., the stochastic heat diffusions on
graphs and simplicial complexes. The solution to this problem follows a forward-backward
topological stochastic process with some hard-to-solve unknown terms. Upon this result,
we propose the topological Schrödinger bridge matching models for topological signal
generative modeling and maching. Specifically, we parameterize the unknowns by some
(topology-aware) learnable models (e.g., graph/simplicial neural networks), and train them
by maximizing the likelihood of the model based on the framework of Chen et al. [2022b].
Such models help us to build primitive dynamics on how brain signals evolve from one
state to another, or how ocean currents to evolve from being curl-free to divergence-free.
In single-cell dynamics, they excel in inferring the intermediate states of cells given the
initial and final observations, which is a challenging task in single-cell RNA sequencing
data analysis. They also help practitioners to generate graph and simplicial signals such as
seismic events and traffic flows for data-hungry applications.

Overall, this thesis extends the field of signal processing and machine learning on graphs,
and positions its contributions in the emerging fields of topological signal processing and
topological machine learning. This thesis provides not only the fundamental and systematic
theoretical analyses of the methods, but also justifies the methods in various real-world
applications. Though some of the initial ideas are developed and extended from graph
signal processing and machine learning, our proposed methods do not take routes away
from the important principle of Hodge-decomposition of simplicial signals, as well as the
simplicial spectral theory. For example, our convolutional filters are designed to process the
different Hodge components of the signals individually, our neural network models are able
to learn from the different components separately, and our Gaussian processes model the
different components independently. Driven by real-world applications, as briefly discussed
earlier and will also be detailed per chapter, this offers more flexibility and interpretability
in the signal processing and machine learning tasks on simplicial complexes.

Recommended mathematical reading
In this thesis, beyond the standard signal processing and machine learning curriculum, we
also make use of mathematical tools including (spectral) graph theory and fundamentals on
simplicial complexes like simplicial signals, discrete calculus and Hodge Laplacians. Though
they can be accessed by basic linear algebra, we refer readers to the pioneering works of
Barbarossa & Sardellitti [2020] and Lim [2020] for the introduction of simplicial complexes
where simplicial signals and properties of Hodge Laplacians are studied. However, note
that in each chapter, we provide the necessary background from the above two materials
for an accessible and self-contained reading.
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For readers who are familar with graph signal processing, we refer to Isufi et al. [2024] for
the most recent overview on the role of graph filters in graph signal processing and machine
learning. This helps understand the importance of building simplicial convolutional filters
formore advanced signal processing andmachine learningmethods on simplicial complexes.
We also refer to Schaub et al. [2021] for a smooth overview on the signal processing from
graphs to simplicial complexes. For readers who are familar with graph neural networks,
we refer to Besta et al. [2024] for a recent overview of the neural networks on higher-order
networks.

Out-takes⋆

In order to keep the thesis focused and concise, I have omitted some other works I col-
laborated on with my supervisors and colleagues during the PhD. Here, we give a brief
overview of these:

1. Topological Volterra Filters [Leus et al., 2021] — Volterra-type filters on graphs taking
into account the node-tuple interactions, led by my promotor Geert Leus, where I
contributed to the experimental design and implementations.

2. Online Filter Learning on Simplicial Complexes [Yang et al., 2023] — Online learning of
simplicial convolutional filters on expanding simplicial complexes where the edges
join the complex, where I contributed to the method design and analysis, under the
help of my colleague Bishwadeep Das, and the experimental implementation.

3. State Estimation in Water Distribution System via Diffusion on the Edge Space [Kerimov
et al., 2025] — Estimating of the pressure and flow rates in water distribution systems
based on the edge diffusion process, where I contributed to the method design and
part of the paper writing.
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2
Simplicial Convolutional

Filters

In this chapter, we aim to build a convolution operator on simplicial complexes that can be
used to process simplicial signals. Such an operator can be built upon the existing works
(as reviewed in Isufi et al. [2024]) on graph convolution operators. These graph convolution
operators are able to regulate graph signals in terms of the graph frequency, which measures
the smoothness of graph signals. To construct such an operator for simplicial signals, it is
necessary to have a clear understaning on the notion of frequency of simplicial signals. If
the simplicial frequency also measures the smoothness of simplicial signals, how should this
smoothness be defined? Moreover, as discussed in Chapter 1, simplicial signals admit the Hodge
decomposition where different components have distinguishing properties — different parts of
edge flows reflect the conservation and rotational properties, respectively. Thus, we intend to
build the convolution operator that acts differently on the different Hodge components such
that we have individual control on the Hodge components. This will allow us, for example,
to preserve certain properties of the signals, such as the conservation of flows, while filtering
out the rotational noisy parts. Finally, we aim to design the simplicial convolution operators
such that they can achieve the desired filtering properties. This chapter is based on the work of
Yang et al. [2021; 2022b].

2.1 Introduction
Methods to process signals supported on non-Euclidean domains modeled as graphs have
attracted substantial research interest recently. Most of these graph signal processing (GSP)
methods focus on signals supported on nodes, e.g., temperature measurements in weather
stations network or EEG signals in a brain network [Ortega et al., 2018; Shuman et al., 2013].
Using linear shift operators that couple node signals to each other via the edges of a graph,
e.g., in terms of an adjacency or a Laplacian matrix, we can design graph filters to process
such node signals [Ortega et al., 2018; Sandryhaila & Moura, 2013; 2014; Shuman et al., 2013].
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However, we often encounter signals that are naturally associated with edges or sets
of nodes in real-world applications. For example, blood flow between different areas
in the brain [Huang et al., 2018], water flow in a hydrological network, data flow in a
communication network, or traffic flow in a road network [Leung et al., 1994; Schaub &
Segarra, 2018]. We typically model these signals as a flow over the edges of a network.
Edge flows have also been used in statistical ranking, to describe financial markets, to
analyze games, etc. [Candogan et al., 2011; Gebhart et al., 2021; Jiang et al., 2011; Mock &
Volic, 2021]. Similarly, we may even encounter signals supported on sets of nodes [Bick
et al., 2023; Huang & Ribeiro, 2015]. For instance, in a co-authorship network, the number
of publications with more than two authors can be seen as such a signal [Patania et al.,
2017].

In these cases, rather than focusing on utilizing the relationships between the nodes to
process node signals, it can be fruitful to study relations between the node-relationships
(edges, higher-order edges) themselves. In the case of edge-signals, we want to understand
couplings between edges, e.g., mediated through a common incident node (lower adjacency)
or because these edges contribute to a triadic relation (upper adjacency). To account for
such relationships, we can model a (network) system as a simplicial complex (SC). Using
this representation we can analyze signals associated to subsets of nodes, i.e., simplicial
signals, with algebraic tools via so-called Hodge Laplacians [Barbarossa & Sardellitti, 2020;
Grady & Polimeni, 2010; Lim, 2020], which generalize the familiar graph Laplacians.

In addition, the Hodge Laplacian admits a Hodge decomposition, which allows for an
intuitive physical interpretation of signals supported on SCs [Grady & Polimeni, 2010; Lim,
2020]. Namely, the Hodge decomposition states that any edge flow can be decomposed
into gradient (curl-free), curl (divergence-free) and harmonic components, respectively.
For instance, a water flow may contain a non-cyclic component which can be seen as the
potential difference between water stations, a locally cyclic component with non-zero curl
and a harmonic component being flow-conservative [Schaub & Segarra, 2018].

Previous works [Barbarossa & Sardellitti, 2020; Schaub et al., 2021] have established a
framework to analyze simplicial signals and focused mostly on low-pass filtering appli-
cations. However, general linear filters for simplicial signals have not been considered in
detail. In this chapter, we propose a simplicial convolutional filter via the shift-and-sum
operation as a matrix polynomial of the Hodge Laplacians to enable a flexible simplicial
signal filtering. Our filter accounts for lower and upper adjacencies in an SC, e.g., the
relationships between edges via a common node or a common 2-simplex, and allows to
separately filter the three signal components provided by the Hodge decomposition.

Contributions. Our three main contributions include:

1) Simplicial convolution. We study simplicial shifting via the Hodge Laplacians as a
basic operation to propagate signals locally using both lower- and upper-connectivities
in an SC. Leveraging this shifting and the shift-and-sum operation, we develop simplicial
convolutional filters by aggregatingmulti-step shifted signals. Their local shifting operation
allows a distributed implementation of the filter with a cost linear in the number of simplices.
We show such filters are linear, shift-invariant, and equivariant to permutations of the
labeling and the orientation of simplices.
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2) Filtering in the spectral domain. Leveraging the simplicial Fourier transform (SFT)
[Barbarossa & Sardellitti, 2020], we show that the principles of the convolutional theorem
apply to the proposed filter, i.e., the filter output in the frequency domain operates as a
point-wise multiplication between the filter frequency response and the SFT of the input
signal. We further show how the simplicial frequencies act as measures of signal variations
w.r.t. the lower and upper adjacencies and divide them into gradient, curl and harmonic
frequencies. More precisely, the eigenmodes associated to these frequencies span the
subspaces provided by the Hodge decomposition. Ultimately, this implies that the proposed
filter can regulate signals independently in the three subspaces provided by the Hodge
decomposition.

3) Filter Design. To implement a desired frequency response, we first consider a standard
least-squares (LS) approach to design the filter. To avoid the eigenvalue computation, we
then consider a grid-based universal design. As both strategies may suffer from numerical
instability, we propose a numerically more stable Chebyshev polynomial design.

Related works. The idea of processing of signals defined on manifolds and topological
spaces has been discussed in various areas, such as geometry processing [Botsch et al.,
2010], and topological data analysis [Wasserman, 2018]. For an introduction that is geared
more towards a signal processing perspective see Barbarossa & Sardellitti [2020]; Grady &
Polimeni [2010].

Filtering of simplicial signals has been partly approached from a regularization perspective.
The works in Schaub & Segarra [2018]; Schaub et al. [2021] proposed a regularized opti-
mization framework based on (simplified variants of) the Hodge Laplacian, to promote flow
conservation of the resulting estimated edge flows. The solution is a low-pass simplicial
filter. The same regularizer was used in Jia et al. [2019]; Schaub et al. [2021] to perform edge
flow interpolation by exploiting the divergence-free and curl-free behaviors of real-world
flows. However, these assumptions do not always hold and the filters arising from the
considered regularized optimization problems have limited degrees of freedom.

Filtering simplicial signals has also been analyzed in the Fourier domain, akin to how
graph filters are analyzed via the graph Fourier transform [Shuman et al., 2013]. The
analogous SFT, defined via the eigendecomposition of the Hodge Laplacian was described
in Barbarossa & Sardellitti [2020]. The eigenvectors provide a simplicial Fourier basis and
the eigenvalues carry a notion of frequency.

Outline. We begin by introducing some preliminaries in Section 2.2. Then we propose the
simplicial convolutional filter in Section 2.3 and investigate its properties. In Section 2.4,
we introduce the simplicial Fourier transform. We then analyze the simplicial filter in
the spectral domain and study the notion of simplicial frequency. Different filter design
methods are discussed in Section 2.5. Finally, we use simplicial filters for subcomponent
extraction and edge flow denoising, and consider applications to financial market and
transportation networks in Section 2.6.
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(a) A simplicial complex.
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(b) A random edge flow.

Figure 2.1: Simplicial Complexes and Signals. (a): An SC of order 2 containing seven nodes, ten edges and
three 2-simplex (the shaded filled triangles). Reference orientations of the simplices are indicate by correspond-
ing arrows (the reference orientation of a node is trivial). (b): An arbitrary edge flow, where a negative flow
indicates that the actual flow direction is opposite to the reference orientation and the magnitude is denoted
by the edge width.

2.2 Background: Simplicial Complexes, Signals and
Hodge Laplacians

In this section, we review SCs [Lim, 2020] and signals supported on simplices [Barbarossa
& Sardellitti, 2020; Schaub et al., 2021]. We also introduce the Hodge Laplacians as an
algebraic representation of a simplicial complex, that acts as a shift operator for simplicial
signals.

Simplicial complexes. Given a finite set of vertices V , a k-simplex sk is a subset of V
with cardinality k+1. A subset of a k-simplex sk with cardinality k is called a face of sk;
hence, sk has k+ 1 faces. A coface of a k-simplex is a simplex sk+1 that includes it. A
simplicial complex S is a finite collection of simplices with an inclusion property: for any
sk ∈ S all its faces sk−1 ⊂ sk are also part of the simplicial complex, i.e., sk−1 ∈ S . The
order of an SC is the largest order of its simplices. For an SC of order K , we collect the
k-simplices into a set Sk = {sk

1 , . . . ,s
k
Nk
} where Nk = |Sk| is the number of k-simplices

[Barbarossa & Sardellitti, 2020; Lim, 2020].

Based on its geometric realizations, we call a 0-simplex a node, a 1-simplex an edge and
a 2-simplex a (filled) triangle. Note that an “empty triangle” formed by three vertices
and three pairwise relations between them is not a 2-simplex. Henceforth, we refer to
2-simplices as triangles for simplicity. A graph is an SC of order 1 with N0 nodes and N1
edges. Fig. 2.1a shows an SC of order 2 including nodes, edges and triangles where edge
{5,6} has nodes {5} and {6} as its faces and triangle {5,6,7} as its coface.

Two k-simplices in an SC are lower adjacent if they have a common face and are upper
adjacent if they are both faces of a common (k+1)-simplex. Thus, for the simplex sk

i , we
define its lower neighborhood N k

i,d as the set of its lower adjacent k-simplices and its upper
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neighborhood N k
i,u as the set of its upper adjacent k-simplices. For the ith edge {5,6} in

Fig. 2.1a, we have that N 1
i,d = {{4,5},{3,6},{5,7},{6,7}}, and the upper neighborhood

is N 1
i,u = {{5,7},{6,7}}.

Simplicial signals. For computational purposes, we fix an (arbitrary) reference orientation
(see Lim [2020] and Schaub et al. [2020, p. 5] for more details) for each simplex according to
the lexicographical ordering of its vertices. Given this reference orientation for k-simplices,
we define a k-simplicial signal xk = [xk

1 , . . . ,x
k
Nk

]⊤ ∈ RNk by attributing the value xk
i to

the ith k-simplex sk
i . If the signal value xk

i is positive, then the corresponding signal is
aligned with the reference orientation; opposite otherwise. Fig. 2.1b illustrates an arbitrary
edge flow on an SC, in which some flows are aligned with and other are opposite the
reference orientation (negative). For convenience, henceforth, we denote a node signal by
v = [v1, . . . ,vN0 ]⊤ ∈ RN0 and an edge flow by f = [f1, . . . ,fN1 ]⊤ ∈ RN1 .

Hodge Laplacians. We can describe the relationships between (k− 1)-simplices and
k-simplices by the kth incidence matrix Bk ∈ RNk−1×Nk , which maps each k-simplex to
the (k−1)-simplices that are its faces; cf. [Barbarossa & Sardellitti, 2020; Lim, 2020] for
more details. Specifically, B1 is the node-edge incidence matrix, and B2 is the edge-triangle
incidence matrix. The rows of Bk are indexed by (k−1)-simplices and the columns by
k-simplices, with entries defined as:

[Bk]ij =


1, if sk−1

i ⊂ sk
j and sk−1

i ∼ sk
j

−1, if sk−1
i ⊂ sk

j and sk−1
i / sk

j

0, otherwise,
(2.1)

where sk−1
i ∼ sk

j indicates the orientation of sk−1
i is aligned with that of sk

j and / denotes
their orientations are opposite [Barbarossa & Sardellitti, 2020]. For example, in Fig. 2.1a,
edge {5,6} and {6,7} are aligned with triangle {5,6,7}, while {5,7} is not. As the ordering
of a node is trivial, we consider the node-to-edge incidence matrix B1 as in graph theory.
B2 is the edge-to-triangle incidence matrix. By definition, incidence matrices have the
property [Barbarossa & Sardellitti, 2020; Lim, 2020]

BkBk+1 = 0. (2.2)

Upon defining the incidence matrices, we can describe an SC S of orderK via the Hodge
Laplacians

Lk = B⊤
k Bk +Bk+1B⊤

k+1, k = 1, . . . ,K−1, (2.3)

with the graph Laplacian L0 = B1B⊤
1 and LK = B⊤

KBK . The kth-Hodge Laplacian Lk

contains the lower Laplacian Lk,d := B⊤
k Bk and the upper Laplacian Lk,u := Bk+1B⊤

k+1.
The lower Laplacian encodes the lower adjacency relationships between simplices through
faces while the upper one encodes the upper adjacency relationships through cofaces.
In particular, L1,d encodes the edge adjacencies through their incident nodes and L1,u
through the common triangles that they form.
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2.3 Simplicial Convolutional Filters
In this section, we propose a simplicial convolutional filter based on the Hodge Laplacian.
We study its basic building block, the simplicial shifting, and show how its local character-
istics make it amenable to a distributed implementation. We then look into the properties
of shift-invariance and permutation and orientation equivariance in the simplicial domain.

Given the kth-Hodge Laplacian Lk , we define a simplicial convolutional filter to process a
k-simplicial signal xk as

Hk = h0I+
L1∑

l1=1
αl1(B⊤

k Bk)l1 +
L2∑

l2=1
βl2(Bk+1B⊤

k+1)l2 , (2.4)

where Hk := H(Lk,d,Lk,u) is a matrix polynomial of the lower and upper Hodge Lapla-
cians with filter coefficients h0, α = [α1, . . . ,αL1 ]⊤, β = [β1, . . . ,βL2 ]⊤ and filter orders
L1,L2. When k = 0, we obtain the graph convolutional filter H0 := H(L0) built upon the
graph Laplacian L0 [Sandryhaila & Moura, 2013; 2014; Shuman et al., 2013].

In the following, we will see that assigning two different sets of coefficients to the lower
and upper Laplacian parts in Hk enables the filter to treat lower and upper adjacencies
differently, which results in a more flexible control of the frequency response. Instead, the
filter Hk =

∑L
l=0hlLl

k , which is equivalent to setting L1 = L2 = L and α = β in (2.4),
cannot differentiate between the two types of adjacencies and loses some expressive power.

When applying Hk to a k-simplicial signal xk , it generates an output xk
o = Hkxk which is

a shift-and-sum operation where the filter Hk first shifts the signal L1 times over the lower
neighborhoods and L2 times over the upper neighborhoods, and then sums the shifted
results according the corresponding coefficients. This is analogous to the convolutions
of graph signals, images and time series [Shuman et al., 2013]. For ease of exposition, we
study the filtering process of an edge flow f via an edge filter H1 hereafter.

Simplicial shifting and local implementation. Consider an edge filter H1 applied to
an edge flow f with an output

fo = H1f = h0f +
L1∑

l1=1
αl1Ll1

1,df +
L2∑

l2=1
βl2Ll2

1,uf , (2.5)

where the basic operation consists of applying different powers of the lower/upper Hodge
Laplacian to the edge flow. This basic operation is denoted simplicial shifting. Let us first
consider the one-step lower shifting f (1)

d := L1,df and one-step upper shifting f (1)
u := L1,uf .

We can express the one-step shifted results on the ith edge, [f (1)
d ]i and [f (1)

u ]i, as

[f (1)
d ]i =

∑
j∈{N 1

d,i
∪ i}[L1,d]ij [f ]j , [f (1)

u ]i =
∑

j∈{N 1
u,i

∪ i}[L1,u]ij [f ]j , (2.6)

which are the weighted linear combinations of the edge flows on the lower and upper
neighborhoods, N 1

d,i and N 1
u,i, of edge i. This implies that one-step shifting is a local

operation in the edge space within the direct lower/upper neighborhoods.
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Figure 2.2: Simplicial shifting. (a): An edge flow indicator f of edge {5,6}. (b): One-step lower shifting L1,df .
Edge {5,6} and its direct lower neighboring edges (green) update their flows by aggregating information
from their lower neighbors and themselves. (c): Two-step lower shifting L2

1,df . lower neighboring edges
(green) update their flows through faces within two hops away from edge {5,6}, which can be obtained by
one-step shifting L1,dfd. (d): One-step upper shifting L1,uf . Edge {5,6} and its upper neighbors (red) update
their flows through local information aggregation. (e): Two-step upper shifting L2

1,uf . The output is localized
within the one-hop upper neighborhood, as there is no upper neighboring edge two hops away from {5,6}.
(f): Two-step shifting result L2

1f , as the sum of (c) and (e).

Consider now the l-step lower shifting of an edge flow f , f (l)
d := Ll

1,df = L1,df (l−1)
d ,

where the second equality indicates that the l-step lower shifting can be computed as a
one-step shifting of the previously shifted result, f (l−1)

d . Accordingly, the l-step upper
shifting follows f (l)

u := Ll
1,uf = L1,uf (l−1)

u . Thus, the simplicial shifting allows a recursive
implementation. For example, the two-step shifted results, f (2)

d and f (2)
u , can be computed

from f (1)
d and f (1)

u via another shifting. Each edge thus collects the flows from its lower
and upper neighbors two hops away. Fig. 2.2 illustrates such shifting operations. Likewise,
the l-step shifted results f (l)

d and f (l)
u contain the information up to the l-hop lower and
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Figure 2.3: Simplicial convolutional filtering is a shift-and-sum operation.

upper neighborhoods. Finally, we can express the output (2.5) as

fo = h0f (0) +
∑L1

l1=1αl1f (l1)
d +

∑L2
l2=1βl2f (l2)

u , (2.7)

which is a weighted linear combination of lower and upper shifted simplicial signals after
different steps. Fig. 2.3 illustrates such a shift-and-sum operation.

Thus, the simplicial convolutional filter admits a simplicial locality, i.e., the output fo is
localized in the L1-hop lower neighborhood and L2-hop upper neighborhood of an edge.
If two edges are lower adjacent more than L1 hops away or upper adjacent more than L2
hops away, H1 does not mix signals defined on such edges. Note, however, if two edges
are lower or upper adjacent at distance d, a d-step lower or upper shifting via Ld

1,d or
Ld

1,u does not necessarily cause an interaction between them: the aggregation might be
cancelled out by the combination of the filter coefficients and the topology of the SC which
leads to positive and negative entries in L1,d or L1,u.

As a local operation within the simplicial neighborhood, the simplicial shifting allows for a
distributed filter implementation, in which each edge updates its information only by a
direct communication with its lower and upper neighbors. The communication complexity
mainly comes from operation (2.6), which is of order O(Dd) with Dd := max{|N 1

d,i|
N1
i=1}

for the lower simplicial shifting at each edge and O(Du) with Du := max{|N 1
u,i|

N1
i=1} for

the upper simplicial shifting, i.e., the maximum number of lower and upper neighbors
among all edges, respectively. Then, the total communication cost of the distributed
implementation for each edge is O(DdL1 +DuL2) due to the L1 lower shifting steps and
L2 upper ones.

Linearity and shift invariance. Simplicial convolutional filters are linear operators that
are invariant to shifts.
Proposition 2.1. The simplicial filter Hk [cf. (2.4)] is linear and shift-invariant. Specifically,
in the edge space, given two edge flows f1 and f2 and a simplicial filter H1, we have

Linearity : H1(af1 + bf2) = aH1f1 + bH1f2,

Shift-invariance : L1,d
(
H1f1

)
= H1

(
L1,df1

)
,

L1,u
(
H1f1

)
= H1

(
L1,uf1

)
.

(2.8)

Proof. See Appendix 2.A. □
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The shift-invariance implies that applying a lower or upper Hodge Laplacian to the simpli-
cial output is equivalent to applying them to the input signal prior to filtering. Consequently,
it holds that H1H′

1f = H′
1H1f for any two filters H1 and H′

1.

Equivariance. In an SC, the labeling and the reference orientation of the simplices should
not affect the filter output. We show that this is indeed the case. We can model the simplex
relabeling of simplices by a set of permutation matrices [Roddenberry et al., 2021]

P = {Pk ∈ {0,1}Nk×Nk : Pk1 = 1,P⊤
k 1 = 1,k ≥ 0}. (2.9)

Let P̄ = (P0,P1, . . .)⊂ P denote a sequence of label permutations in an SC. After rela-
beling the simplices by P̄ , signal xk becomes Pkxk , i.e., a reordering of the entries of xk .
Similarly, the incidence matrix Bk becomes B̄k = Pk−1BkPk , i.e., a reordering of the
rows and columns of Bk . Likewise, for Lk , we get L̄k = PkLkP⊤

k .
Proposition 2.2 (Permutation equivariance). Consider the Hodge Laplacians Lk and L̄k =
PkLkP⊤ for a permutation sequence P̄ . For the simplicial signals xk and x̄k = Pkxk , with
H̄k := H(L̄k) [cf. (2.4)], the simplicial filter outputs xk

o := Hkxk and x̄k
o := H̄kx̄k satisfy

x̄k
o := H̄kx̄k = H̄k(Pkxk) = PkHkxk := Pksk

o . (2.10)

Proof. See Appendix 2.B. □

A new reference orientation of a k-simplex leads to a multiplication by −1 of the columns
(or rows) of the incidence matrices Bk and Bk+1 where the k-simplex appears and it also
flips the sign of the corresponding simplicial signal. This can be modeled by a diagonal
matrix Dk from the set

D = {Dk = diag(dk) : dk ∈ {±1}Nk ,k ≥ 1,d0 = 1}, (2.11)

where d0 = 1, as the orientation of the nodes is trivial [Roddenberry et al., 2021]. Denote
a sequence of orientation changes by D̄ = (D0,D1, . . .) ⊂ D. A k-simplicial signal xk

becomes Dkxk after an orientation change by D̄. Accordingly, the incidence matrix Bk

becomes B̄k = Dk−1BkDk and the Hodge Laplacian Lk becomes L̄k = DkLkDk .
Proposition 2.3 (Orientation equivariance). Consider the Hodge Laplacians Lk and L̄k =
DkLkDk for a sequence of orientation changes D̄. For the simplicial signals xk and x̄k =
Dkxk , with H̄k = H(L̄k), the simplicial filter outputs xk

o := Hkxk and x̄k
o := H̄kx̄k satisfy

x̄k
o := H̄kx̄k = H̄k(Dkxk) = DkHkxk := Dksk

o . (2.12)

Proof. See Appendix 2.C. □

Intuitively, the two previous propositions state that for the simplicial filter Hk the labeling
and reference orientation of simplices are inconsequential for the filter output. These two
properties have been previously reported in the context of neural network on SCs [Bodnar
et al., 2021b; Roddenberry et al., 2021; Yang et al., 2022a]. These equivariances imply that
we can learn a filter to process a given simplex by seeing only permuted and reoriented
versions of it: if two parts of an SC are topologically equivalent and the simplices support
corresponding flows, a simplicial convolutional filter yields equivalent outputs.
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2.4 Spectral Analysis of Simplicial Filters
We now analyze the spectral properties of the simplicial convolutional filter. First, we
introduce the Hodge decomposition and review the simplicial Fourier transform (SFT)
[Barbarossa & Sardellitti, 2020]. Then, we investigate the simplicial frequency in terms
of the Hodge decomposition. By defining three frequency types, we characterize the
frequency response of the filter.

2.4.1 Hodge Decomposition
Theorem 2.4. The Hodge decomposition in the edge space states that:

RN1 = im(B⊤
1 )⊕ im(B2)⊕ker(L1) (2.13)

where im(·) and ker(·) are the image and kernel of a matrix.

This implies that the edge space is composed of three orthogonal subspaces, namely, the
gradient space im(B⊤

1 ), the curl space im(B2), and the harmonic space ker(L1) [Lim,
2020; Schaub et al., 2021]. Thus, any edge flow f ∈ RN1 can be decomposed into three
orthogonal components

f = fG + fC + fH, (2.14)

which are the gradient component fG ∈ im(B⊤
1 ), the curl component fC ∈ im(B2), and the

harmonic component fH ∈ ker(L1), respectively. Furthermore, the incidence matrices B1,
B2 and their adjoints can be interpreted as follows [Barbarossa & Sardellitti, 2020; Schaub
et al., 2021].

Divergence operator B1. The incidence matrix B1 acts as a divergence operator. By
applying it to an edge flow f , we compute the divergence of the flow, div(f) = B1f . The
ith entry of div(f) is the netflow passing through the ith vertex, i.e., the difference between
the total inflow and outflow at vertex i. This is a nodal variation measure of the edge flow.
A vertex is a source or sink if it has a nonzero netflow.

Gradient operator B⊤
1 . The adjoint operator B⊤

1 is called the gradient operator, which
takes the difference between node signals along the oriented edges to induce an edge flow,
fG = B⊤

1 v. We call fG ∈ im(B⊤
1 ) a gradient flow and subspace im(B⊤

1 ) the gradient space,
as any gradient flow can be induced from a node signal via the gradient operator.

Curl adjoint B2. By applying matrix B2 to a triangle signal t ∈ RN2 , we can induce a
curl flow, fC = B2t, corresponding to a flow locally circling along the edges of triangles.
The space im(B2) is the curl space as any flow in it can be induced from a triangle signal.

Curl operator B⊤
2 . By applying the operator B⊤

2 to an edge flow f , we compute its curl
as curl(f) = B⊤

2 f , where the ith entry is the netflow circulating along the ith triangle, i.e.,
the sum of the edge flows forming the triangle. This can be seen as a rotational variation
measure of the edge flow.

The two incidence matrices and their adjoints provide insights into the three orthogonal
subspaces and signal components given by the Hodge decomposition.
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Figure 2.4: Flow decomposition illustration (all numbers rounded to two decimal places). (a): A synthetic
edge flow f . (b): The gradient component fG has a nonzero netflow at each node, but a zero flow around each
triangle. (c): The curl component fC has a zero netflow at each node, i.e., is divergence-free, but a nonzero flow
around each triangle. (d): The harmonic component fH has a zero netflow at each node and zero circulation
around each triangle, i.e., is divergence- and curl-free (see Section 2.6.1).

i) If edge flow f has a zero divergence at each vertex, i.e., B1f = 0⇔ f ∈ ker(B1), then
it is cyclic or divergence-free. The space ker(B1) is called the cycle space, orthogonal
to the gradient space, i.e., RN1 = im(B⊤

1 )⊕ker(B1). A gradient flow always has
nonzero divergence, while a curl flow is divergence-free due to (2.2).

ii) If edge flow f has a zero curl on each triangle, it is curl-free and f ∈ ker(B⊤
2 ).

The curl space im(B2) is orthogonal to the space ker(B⊤
2 ) and we have RN1 =

im(B2)⊕ker(B⊤
2 ). A gradient flow fG is curl-free due to (2.2).

iii) The space ker(L1) is called the harmonic space. Any flow fH ∈ ker(L1) satisfies
L1fH = 0, which is harmonic, i.e., both divergence- and curl-free.

The decomposition of an edge flow into its three components reveals different properties
of the flow, as shown in Fig. 2.4. For instance, we can study the effect of an external source
or sink by extracting the gradient component of the edge flow [Barbarossa & Sardellitti,
2020]. In Section 2.6.1, we will discuss this subcomponent extraction problem and solve it
with simplicial filters.

2.4.2 Simplicial Fourier Transform
The Hodge Laplacians are positive semidefinite matrices and admit an eigendecomposition

Lk = UkΛkU⊤
k , (2.15)

where the orthonormal matrix Uk = [uk,1, . . . ,uk,Nk
] collects the eigenvectors, and the

diagonal matrix Λk = diag(λk,1, . . . ,λk,Nk
) the associated eigenvalues. There exists a

correspondence between U1 and the three orthogonal subspaces given by the Hodge
decomposition (2.13), detailed in the following proposition.
Proposition 2.5. Given the 1-Hodge Laplacian of an SC L1 = L1,d +L1,u, the following
holds.
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1. Gradient eigenvectors UG = [uG,1, . . . ,uG,NG ] ∈ RN1×NG of L1,d associated with
nonzero eigenvalues span the gradient space im(B⊤

1 )with dimensionNG, i.e., im(B⊤
1 ) =

im(UG).

2. Curl eigenvectorsUC = [uC,1, . . . ,uC,NC ]∈RN1×NC ofL1,u associated with nonzero
eigenvalues span the curl space im(B2) with dimension NC, i.e., im(B2) = im(UC).

3. Gradient eigenvectors UG are orthogonal to curl ones UC. Matrix [UG UC] forms the
eigenvectors of L1 associated with nonzero eigenvalues, which span the space im(L1)
with dimension NG +NC.

4. Harmonic eigenvectors UH = [uH,1, . . . ,uH,NH ] ∈ RN1×NH of L1 associated with
zero eigenvalues span the harmonic space ker(L1) with dimensionNH, i.e., ker(L1) =
im(UH). Matrices [UH UC] and [UH UG] provide the eigenvectors of L1,d and L1,u
associated with zero eigenvalues, respectively.

5. The columns of U1 can be ordered such that U1 = [UH UG UC]. Matrix U1 forms
an eigenvector basis for L1, L1,d and L1,u, and N1 =NH +NG +NC.

Proof. See Appendix 2.D. □

Proposition 2.5 shows that:

1. the eigenvectors in U1 can fully span the three orthogonal subspaces given by the
Hodge decomposition;

2. the Hodge Laplacian L1 and its lower and upper counterparts, L1,d and L1,u, can
be simultaneously diagonalized by U1; and,

3. from im(B⊤
1 ) = im(L1,d), we have that the image of the lower Hodge Laplacian

L1,d coincides with the gradient space, and from im(B2) = im(L1,u), the image of
L1,u coincides with the curl space.

These results are applicable to the k-Hodge Laplacian accordingly. See Schaub et al. [2021,
Thm. 1] and Barbarossa & Sardellitti [2020, Prop. 1] for related discussions.

Thus, the lower shifting of a curl or harmonic flow leads to zero as the harmonic and curl
space correspond to the null space of L1,d. Likewise, the upper shifting of a gradient or
harmonic flow leads to zero, i.e.,

L1,dfC = 0, L1,ufG = 0, L1,dfH = L1,ufH = 0. (2.16)

Given a k-simplicial signal sk , the simplicial Fourier transform (SFT) is given by its projection
onto the eigenvectors Uk , i.e., s̃k := U⊤

k sk . Entry [sk]i represents the weight eigenvector
uk,i has on expressing sk . The inverse SFT is given by sk = Uks̃k . For k = 0, the SFT
coincides with the GFT [Barbarossa & Sardellitti, 2020]. As for the GFT, the eigenvalues of
Lk carry the notion of simplicial frequencies. But in the simplex domain, this frequency
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Figure 2.5: Spectral analysis of the edge space in Fig. 2.1a. The flow value (all numbers rounded to two decimal
places) is indicated by the edge width and annotated next to the edge. It is zero if the edge is not annotated.
If a flow orientation is opposite to the reference orientation, the corresponding flow value is negative. (a)-(c):
The 1st, 3rd, and 6th eigenvectors in the gradient space UG with the corresponding gradient frequencies λG.
The total divergence of the eigenvector increases with the eigenvalue. (d)-(e): The 1st and 3rd eigenvectors in
the curl space UC with the corresponding curl frequencies λC. The total curl of the eigenvectors increases
with the eigenvalue. (f): The only eigenvector in the harmonic space UH has frequency 0 and zero divergence
and curl.

notion is more involved. As we illustrate in the sequel for k = 1, the eigenvalues in the set
Q= {λ1,1, . . . ,λ1,N1} of L1 measure three types of simplicial frequencies.

Gradient frequency. For any unit norm gradient eigenvector uG ∈UG, associated to
the gradient space im(B⊤

1 ), its corresponding eigenvalue follows

λG = u⊤
GL1uG = ∥B1uG∥22+∥B⊤

2 uG∥22= ∥B1uG∥22, (2.17)

where the last equality is due to the fact that uG is curl-free, i.e., B⊤
2 uG = 0. Thus,

eigenvalue λG is the squared ℓ2-norm of the divergence B1uG of the eigenvector edge
flow uG. The magnitude of λG measures the extent of total divergence, i.e., the nodal
variation. The gradient eigenvectors associated with a large eigenvalue have a large total
divergence. If the SFT f̃ = U⊤

1 f of an edge flow has a large weight on such an eigenvector,
we say that it contains a high gradient frequency, corresponding to its large divergence.
We call any eigenvalue λG associated to the gradient eigenvectors UG a gradient frequency
and collect them in the set QG = {λG,1, . . . ,λG,NG}.

Curl frequency. For any unit norm curl eigenvector uC ∈UC associated to the curl space
im(B2), its corresponding eigenvalue follows

λC = u⊤
CL1uC = ∥B1uC∥22+∥B⊤

2 uC∥22= ∥B⊤
2 uC∥22, (2.18)
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where the last equality is due to the fact that uC is divergence-free, i.e., B1uC = 0. Eigen-
value λC is the squared ℓ2-norm of the curl B⊤

2 uC of the eigenvector uC. Thus, the
magnitude of λC measures the extent of total curl, i.e., the rotational variation. Any eigen-
vector in the curl space corresponding to a large eigenvalue has a large total curl. If the
SFT of an edge flow contains large weights on such eigenvectors, we say that it has a high
curl frequency. We name any eigenvalue λC associated to the curl eigenvectors UC a curl
frequency and collect them in the set QC = {λC,1, . . . ,λC,NC}.

Harmonic frequency. The remaining eigenvalues λH are associated to the eigenvectors
uH ∈UH which span the harmonic space ker(L1). They can be expressed as

λH = u⊤
HL1uH = ∥B1uH∥22+∥B⊤

2 uH∥22= 0, (2.19)

because uH is harmonic, i.e., both divergence- and curl-free. If the SFT of an edge flow has
only nonzeros at the harmonic frequencies (which are all zeros), then it is a harmonic flow.
We collect the harmonic frequencies (all zeros) in the set QH = {λH,1, . . . ,λH,NH}.

With these three types of simplicial frequencies, low and high frequency notions in an
SC are only meaningful with respect to a certain type. A higher gradient (curl) frequency
indicates respectively a larger nodal (rotational) variability. This is different from the
frequency notion in discrete and graph signal processing. A zero simplicial frequency does
not correspond to a constant edge flow but a globally conservative flow, i.e., divergence-
and curl-free. Fig. 2.5 shows examples of different eigenvectors and the associated eigen-
values, which would be the analogous of the complex exponentials in discrete-time signal
processing for the edge space in Fig. 2.1a.

Simplicial embeddings. From Proposition 2.5 and three types of simplicial frequencies,
we can interpret the SFT by the following diagonalization of L1

L1 = U1blkdiag
(
ΛH,ΛG,ΛC

)
U⊤

1 (2.20)

with U1 =
[
UH UG UC

]
and blkdiag(A,B,C) a block-diagonal matrix containing the

square matrices A,B,C as diagonal blocks. Similarly, we have

L1,d = U1blkdiag
(
0,ΛG,0

)
U⊤

1 (2.21a)

L1,u = U1blkdiag
(
0,0,ΛC

)
U⊤

1 (2.21b)

for the lower and upper Laplacians, where 0 is an all-zero matrix of appropriate dimensions.
Such insightful eigendecompositions enable us to define the following three embeddings
of an edge flow f ∈ RN1

f̃H = U⊤
Hf = U⊤

HfH ∈ RNH , harmonic embedding
f̃G = U⊤

Gf = U⊤
GfG ∈ RNG , gradient embedding

f̃C = U⊤
C f = U⊤

C fC ∈ RNC , curl embedding.
(2.22)

They follow from the orthogonality of the three components given by the Hodge decom-
position. Equivalently, we can write the SFT of f as f̃ = [f̃⊤

H , f̃⊤
G , f̃⊤

C ]⊤. Each entry of an
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embedding represents the weight the flow has on the corresponding eigenvector (simplicial
Fourier basis vector), e.g., entry [f̃G]i is the SFT of f at the ith gradient frequency λG,i.
Such an embedding provides a compressed representation of the edge flow if they present
a degree of sparsity [Barbarossa & Sardellitti, 2020] and allows us to differentiate different
types of edge flow, e.g., to cluster trajectories and analyze ocean drift data [Roddenberry &
Segarra, 2019; Schaub et al., 2020].

2.4.3 Filter Freqency Response
Upon defining the SFT, we can analyze the frequency response of the simplicial convo-
lutional filter (2.4). From the diagonalizations (2.21a) and (2.22), we see that the lower
simplicial shifting of an edge flow affects only the gradient component and the upper
shifting affects only the curl component, i.e.,

L1,df = UGΛGf̃G, and L1,uf = UCΛCf̃C. (2.23)

Through diagonalizing H1 by U1 =
[
UH UG UC

]
, we can find the frequency response

of H1 as
H̃1 = U⊤

1 H1U1 = blkdiag
(
H̃H,H̃G,H̃C

)
, (2.24)

where H̃H = h0I, H̃G = h0I +
∑L1

l1=1αl1Λl1
G and H̃C = h0I +

∑L2
l2=1βl2Λl2

C . At an
arbitrary frequency λ, the frequency response H̃1(λ) is given by

H̃H(λ) := h0, for λ ∈QH,

H̃G(λ) := h0 +
∑L1

l1=1αl1λ
l1 , for λ ∈QG,

H̃C(λ) := h0 +
∑L2

l2=1βl2λ
l2 , for λ ∈QC,

(2.25)

which is the filter frequency response at the harmonic, gradient and curl frequencies,
respectively. By the definition of spectral filtering, the filter H1 cannot distinguish the signal
components belonging to the subspace spanned by the eigenvectors associated to an eigenvalue
of multiplicity greater than one. For instance, the filter cannot respond differently to multiple
harmonic components, but only scale them by a factor h0. In addition, we make the following
three observations.

1. Filter H1 controls the different frequency types independently. The coefficient h0
determines the harmonic frequency response and contributes to the whole simpli-
cial spectrum. The coefficients α and β contribute only to the gradient and curl
frequency response, respectively. This independent control on different signal sub-
spaces corresponds to the different parameters imposed on the lower and upper
adjacencies in the simplicial domain. In contrast, if setting L1 = L2 and α = β in
H1, the filter cannot regulate the gradient and curl spaces independently and has
less flexibility.

2. The gradient frequency response is fully determined by thematrix polynomial inL1,d
[cf. (2.21a) and (2.24)]. Thus, ifL2 = 0, H1 has as responses h0 for λ∈QH∪QC, and
H̃G = h0 +

∑L1
l1=1αl1λ

l1 , for λ ∈QG. This controls the gradient and non-gradient
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frequencies with a reduced design burden due to fewer parameters. But we give
up the control on the curl frequencies. Likewise for the case of L1 = 0, which is
beneficial when only curl components need to be tuned.

3. At two overlapping frequencies λ1 = λ2 with λ1 ∈ QG, and λ2 ∈ QC, filter H1
responds differently as H̃G(λ1) and H̃C(λ2) [cf. (2.25)], respectively. This cannot
be realized for the filter H1 =

∑L
l=0hlLl

1, i.e., setting L1 = L2 and α = β, which
follows H̃G(λ1) = H̃C(λ2) instead. In the latter case, it will preserve the unwanted
curl component at λ2 when setting H̃G(λ) = 1, for λ ∈ QG, when the goal is to
extract the gradient component.

2.5 Filter Design
Given a training set of input-output edge flow relations T = {(f1, fo,1), . . . ,(f|T |, fo,|T |)},
we can learn the filter coefficients in a data-driven fashion by fitting the filtered output
H1f to the output fo. Specifically, consider a mean squared error (MSE) cost function and
a regularizer r(h0,α,β) to avoid overfitting, we formulate the problem as

min
h0,α,β

1
|T |

∑
(fi,fo,i)∈T

∥H1fi− fo,i∥22 +γr(h0,α,β), (2.26)

with γ > 0. A flow prediction based on (2.26) is detailed in Yang et al. [2021].

In this section, we focus in detail on designing the simplicial filter given a desired fre-
quency response. Specifically, we assume a desired frequency response g0 at the harmonic
frequency λ= 0, a gradient frequency response gG(λ) for λ ∈QG, and a curl frequency
response gC(λ) for λ ∈QC. To design the coefficients h0,α,β, our goal is then to approx-
imate the desired response by the filter frequency response H̃1(λ) [cf. (2.25)], which can
be formulated as 

h0 ≈ g0, for λi = 0,
h0 +

∑L1
l1=1αl1λ

l1
i ≈ gG(λi), for λi ∈QG,

h0 +
∑L2

l2=1βl2λ
l2
i ≈ gC(λi), for λi ∈QC.

(2.27)

In the following, we first use a standard least-squares (LS) approach to solve (2.27). Later,
we consider a universal design to avoid the eigenvalue computation when a continuous
desired frequency response is given. In particular, we consider a grid-based and a Chebyshev
polynomial approach.

2.5.1 Least-Sqares Filter Design
Denote the number of distinct gradient frequencies in QG by DG, and that of distinct curl
frequencies in QC by DC. Then, the three sets of equations in (2.27) contain respectively
one, DG and DC distinct linear equations. Let g = [g0,g⊤

G,g⊤
C ]⊤ collect the desired

responses at distinct frequencies where [gG]i = gG(λG,i), for i= 1 . . . ,DG, is the response
at the ith distinct gradient frequency λG,i, and [gC]i = gC(λC,i), for i= 1 . . . ,DC, at the
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ith distinct curl frequency. Then, we can obtain the filter coefficients by solving the LS
problem

min
h0,α,β

∥∥∥∥∥∥
1

0
ΦG 0
0 ΦC

h0
α
β

−g

∥∥∥∥∥∥
2

2

, (2.28)

where 1 (0) is an all-one (all-zero) matrix or vector of an appropriate dimension, ΦG ∈
RDG×L1 and ΦC ∈ RDC×L2 are Vandermonde matrices with respective entries [ΦG]ij =
λj

G,i and [ΦC]ij = λj
C,i. We refer to problem (2.28) as the LS design, which can be solved

either with a direct solver or with a decoupled solver, studied as follows.

Direct LS design. From the Cayley-Hamilton theorem (see [Horn & Johnson, 2012] and
[Sandryhaila & Moura, 2013, Thm. 3]), we know that any analytical function of a matrix
can be expressed as a matrix polynomial of degree less than its minimal polynomial degree,
which equals the number of distinct eigenvalues for a positive semi-definite matrix. Thus,
we can assume the filter orders L1 ≤DG and L2 ≤DC. Under this condition, problem
(2.28) admits a unique solution which can be obtained via the pseudo-inverse of the system
matrix. Furthermore, when L1 =DG and L2 =DC, ΦG and ΦC are square and any two
rows in them are linearly independent, the solution leads to a zero cost in (2.28). We refer
to this pseudo-inverse solution of (2.28) as the direct LS design 1.

In addition, given a desired edge operator G, the following proposition states that it can
be implemented by filter H1.
Proposition 2.6. A desired linear operator G ∈ RN1×N1 can be perfectly implemented by a
simplicial filter H1 if the following three conditions hold true:

1. Matrices G and L1 are simultaneously diagonalizable, i.e., U1 forms an eigenvector
basis for G. Let g = [g⊤

H ,g⊤
G,g⊤

C ]⊤ collect the eigenvalues of G.

2. If two eigenvalues of L1 are of the same frequency type and equal, the corresponding
eigenvalues of G are also equal. For λH,i = λH,j = 0∈QH, it holds that [gH]i = [gH]j ,
for λG,i = λG,j ∈QG, [gG]i = [gG]j , and for λC,i = λC,j ∈QC, [gC]i = [gC]j .

3. The filter orders of H1 fulfill L1 ≥DG, L2 ≥DC.

Proof. See Appendix 2.E. □

Decoupled LS design. We can reduce the complexity of solving (2.28) by decoupling the
cost function for different frequency types. First, we rewrite problem (2.28) as

min
h0,α,β

∥∥∥∥[1 ΦG
][h0

α

]
−gG

∥∥∥∥2

2
+
∥∥[1 ΦC

][
h0β

]
−gC

∥∥2
2 +∥h0−g0∥22 . (2.29)

To approximate a solution, we ignore the dependence of the first two terms in (2.29) on
coefficient h0 and solve the last term separately to estimate h0. We then substitute the
1Note that in the special case of L1 = L2 with α = β or when L1 = 0 or L2 = 0, the spectral design is equivalent
to that of a graph filter [Ortega et al., 2018; Sandryhaila & Moura, 2014].
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estimate ĥ0 in the first two terms to obtain α̂ and β̂, given by
ĥ0 = g0,

α̂ = Φ†
G(gG−g01),

β̂ = Φ†
C(gC−g01),

(2.30)

which, referred to as the decoupled LS design, is suboptimal compared to the direct LS
design. The following proposition discusses this suboptimality.
Proposition 2.7. The decoupled LS design (2.30) converges to the direct solution of (2.28) as
∥ΦGΦ†

G− I∥F→ 0 and ∥ΦCΦ†
C− I∥F→ 0 where ∥·∥F is the Frobenius norm.

Proof. See Appendix 2.F. □

Proposition 2.7 states that as the pseudo-inverses of ΦG and ΦC become closer to the true
inverses, the decoupled solution converges to the direct solution. Moreover, the decoupled
LS design reduces the computational cost toO(D3

G +D3
C) fromO((1+DG +DC)3) for the

direct one. However, both designs require the computation of the eigenvalues of the Hodge
Laplacians, which takes in general a computational complexity of O(N3

1 ) [Watkins, 2007].
In the sequel, we consider a universal design strategy to avoid the eigenvalue computation,
specifically, a grid-based design and a Chebyshev polynomial design [Shuman et al., 2018].

2.5.2 Grid-Based Filter Design
The grid-based filter design aims to match the desired frequency response in a continuous
interval where the exact frequencies lie such that the eigenvalue computation of L1 can
be avoided. Given a harmonic frequency response g0, a continuous gradient frequency
response gG(λ),λ∈ [λG,min,λG,max] and a continuous curl frequency response gC(λ),λ∈
[λC,min,λC,max], we want that

h0−g0 ≈ 0∫ λG,max
λG,min

∣∣h0 +
∑L1

l1=1αl1λ
l1 −gG(λ)

∣∣2dλ≈ 0∫ λC,max
λC,min

∣∣h0 +
∑L2

l2=1βl2λ
l2 −gC(λ)

∣∣2dλ≈ 0,
(2.31)

which is a continuous version of (2.27). An example of the continuous frequency response
is given in Fig. 2.6 (top).

By samplingM1 andM2 (grid-)points uniformly from the intervals [λG,min,λG,max] and
[λC,min,λC,max], the problem (2.31) can then be formulated as an LS problem of form
(2.28) but with the sampled frequencies as the entries of the system matrix instead of the
true eigenvalues. We can again solve this LS problem either via a direct pseudo-inverse of
the system matrix or via the decoupled solution method [cf.(2.30)]. Notice that the largest
true eigenvalue can be approximated by efficient algorithms, e.g., power iteration, [Sleijpen
& Van der Vorst, 2000; Watkins, 2007]. For the smallest, we can set a small value greater
than 0 as the lower bound.
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Figure 2.6: An example of a continuous frequency response for the grid-based (top) and Chebyshev (bottom)
filter design, which promotes low gradient frequencies and the high curl frequencies. The cut-off frequencies
are subscripted by τ . The harmonic frequency response is given at frequency 0. For the Chebyshev polynomial
design, we require that the gradient and curl are continuous functions starting from frequency 0 and gG(0) =
gC(0) = g0.

2.5.3 Chebyshev Polynomial Filter Design
Both discussed filter designs rely on solving an LS problem, which has a Vandermonde
matrix as the system matrix, and suffers from numerical instability. To tackle this issue,
we consider a Chebyshev polynomial based filter design [Druskin & Knizhnerman, 1989;
Shuman et al., 2018]. As illustrated in Fig. 2.6(Bottom), consider a continuous gradient
frequency response gG(λ),λ ∈ [0,λG,max] and a continuous curl frequency response
gC(λ),λ∈ [0,λC,max]. We further require that gG(0) = gC(0) = g0. That is, the continuous
functions gG(λ) and gC(λ) are defined starting from frequency 0, at which they are equal
to the harmonic frequency response g0.

As the filter H1 is a sum of matrix polynomials of L1,d and L1,u, our strategy is to first
consider the Chebyshev polynomial design for each of them so to separately obtain the
gradient and curl frequency responses, then sum these two polynomials to obtain the
final filter. However, one type of frequency response could be affected unwantedly by
the identity matrix term in the Chebyshev polynomial designed for the other frequency
response, as detailed later. The requirement that gG(0) = gC(0) = g0 allows a possible
correction.

First, we approximate the gradient frequency response via a truncated series of shifted
Chebyshev polynomials Hd := Hd(L1,d). Let P̄l(λ),λ ∈ [−1,1] be the lth Chebyshev
polynomial of the first kind [Mason & Handscomb, 2002]. We perform a transformation
Pl(λ) := P̄l(λ−ω

ω ) with ω := λG,max
2 to shift the domain to [0,λG,max]. We then approx-

imate the operator gG(L1,d) that has the gradient frequency response gG(λ) by Hd of
order L1

Hd = 1
2cd,0I+

∑L1
l1=1 cd,l1Pl1(L1,d) (2.32)

where we have P0(L1,d) = I, P1(L1,d) = 2
λG,max

L1,d− I, the l1th Chebyshev term, for
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l1 ≥ 2, is
Pl1(L1,d) = 2P1(L1,d)Pl1−1(L1,d)−Pl1−2(L1,d), (2.33)

and the Chebyshev coefficients cd,l1 can be computed as

cd,l1 = 2
π

∫ π

0
cos(l1ϕ)gG

(
ω(cosϕ+1)

)
dϕ. (2.34)

The frequency response H̃d(λ) of Hd can be found as{
pd,0 := 1

2cd,0 +
∑⌊L1/2⌋

l1=1 (cd,2l1 − cd,2l1−1), for λ ∈QH∪QC

H̃d,G(λ) := 1
2cd,0 +

∑L1
l1=1 cd,l1Pl1(λ), for λ ∈QG,

(2.35)

with coefficient pd,0 on the identity term of Hd, which is the frequency response at the
harmonic and curl frequencies, associated to the kernel ofL1,d [cf. (2.21a)]. For a reasonably
large L1 we have pd,0 ≈ g0 and H̃d,G(λ)≈ gG(λ),λ ∈QG.

Second, to approximate the curl frequency response gC(λ), we follow the same procedure
[cf. (2.32)-(2.34)] to obtain the Chebyshev polynomial Hu := Hu(L1,u) of order L2

Hu = 1
2cu,0I+

∑L2
l2=1 cu,l2Pl2(L1,u). (2.36)

It has a frequency response H̃u(λ){
pu,0 := 1

2cu,0 +
∑⌊L2/2⌋

l2=1 (cu,2l2 − cu,2l2−1), for λ ∈QH∪QG

H̃u,C(λ) := 1
2cu,0 +

∑L2
l2=1 cu,l2Pl2(λ), for λ ∈QC.

(2.37)

with coefficient pu,0 on the identity term of Hu, which is the frequency response at the
harmonic and gradient frequencies, associated to the kernel of L1,u [cf. (2.21b)]. For a
reasonably large L2 we have pu,0 ≈ g0 and H̃u,C(λ)≈ gC(λ),λ ∈QC.

Lastly, by summing Hd and Hu, we obtain a filter that approximates the gradient and
curl frequency responses. However, from (2.35), we see that Hd generates a response
pd,0 at both harmonic and curl frequencies. This will lift up the curl frequency response
unwantedly by pd,0. Similarly, Hu has the effect of lifting the gradient frequency response
by pu,0 [cf. (2.37)]. By requiring that gG(0) = gC(0) = g0, we can remove this unwanted
influence by subtracting a term g0I from the summation. Hence, the final Chebyshev
polynomial design H1 of orders L1 and L2 is given by

H1 = Hd +Hu−g0I, (2.38)

which has a frequency response H̃1(λ)
pd,0 +pu,0−g0, for λ ∈QH

H̃l,G(λ)+pu,0−g0, for λ ∈QG

H̃u,C(λ)+pd,0−g0, for λ ∈QC.

(2.39)

The following proposition states that the approximation error of the Chebyshev polynomial
design (2.38) is bounded.
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Proposition 2.8. Let G be the desired operator corresponding to the continuous gradient
and curl frequency responses gG(λ) with λ ∈ [0,λG,max] and gC(λ) with λ ∈ [0,λC,max],
as well as the harmonic one gG(0) = gC(0) = g0. Let H1 [cf. (2.38)] be a truncated series
of Chebyshev polynomials of orders L1 and L2 with frequency response H̃1(λ) [cf. (2.39)].
Define

B1(L1) := supλ∈[0,λG,max]
{∣∣H̃d(λ)−g0−gG(λ)

∣∣},
B2(L2) := supλ∈[0,λC,max]

{∣∣H̃u(λ)−g0−gC(λ)
∣∣}, (2.40)

and B := max
{
B1(L1),B2(L2)

}
. Then, we have that

∥G−H1∥2:= max
f,0

∥(G−H1)f∥2
∥f∥2

≤B (2.41)

Proof. See Appendix 2.G. □

When gG(·) and gC(·) are real analytic, a stronger bound can be found [Hammond et al.,
2011; Shuman et al., 2018]. In addition, we make the following three comments.

1. When only the gradient frequency response gG(λ) is of interest, we can directly
consider the Chebyshev polynomial Hd [cf. (2.32)] with L2 = 0. Likewise we
consider Hu when only gC(λ) is of interest.

2. If a frequency response g(λ) is given on the whole spectrum, we can build a filter
H =

∑L
l=0hlLl

1 based on a Chebyshev polynomial design analogous to the graph
filter case [Shuman et al., 2018].

3. The Chebyshev polynomial design requires no eigenvalue computation of L1. Thus,
it does not suffer from numerical instability, allows to build simplicial filters with
large L1 and L2 for an accurate design, and admits a recursive and distributed
implementation due to the Chebyshev polynomial property (2.33).

2.6 Applications
In this section, we first discuss how to use a simplicial filter for subcomponent extraction
and edge flow denoising. We then consider analyses of financial markets, street and traffic
networks. These are similar to previous works [Barbarossa & Sardellitti, 2020; Jiang et al.,
2011; Schaub & Segarra, 2018; Schaub et al., 2014; Youn et al., 2008], but we directly use our
developed filters instead of employing a regularized optimization problem (which implicitly
defines a low-pass filter).

To gauge the performance in estimation tasks, we use the normalized root mean square
error (NRMSE), e = ∥f̂ − f0∥2/∥f0∥2 with the flow estimate f̂ and the true flow f0. For
filter design problems, we evaluate the spectral norm ∥H1−G∥2 with the designed filter
H1 and the true operator G. The Chebfun toolbox was used for the Chebyshev polynomial
filter design [Driscoll et al., 2014].
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Figure 2.7: Subcomponent extraction performance by filters H1 with different parameters based on an LS
design. The extraction becomes better as the filter order increases. For the gradient and curl components,
setting L1 = L2 and α = β worsens the performance because of the limited expressive power. For the general
filter form, the direct and decoupled LS designs have smaller performance difference as the filter order grows
(see Proposition 2.7).

2.6.1 Subcomponent Extraction
In pairwise ranking problems, we aim to rank alternatives by comparing their scores.
The work [Jiang et al., 2011] modeled the score differences between alternatives as edge
flows on a pairwise comparison graph. The gradient component of these flows gives a
global ranking and the curl components measures the inconsistency of the ranking. For
further examples, see Candogan et al. [2011]; Gebhart et al. [2021]; Mock & Volic [2021]. A
common approach to obtain the three components of the flow is to compute [Barbarossa &
Sardellitti, 2020; Jiang et al., 2011; Lim, 2020]:

f̂G = PGf , f̂C = PCf , f̂H = PHf = f − f̂G− f̂C. (2.42)

where PG = B⊤
1 (B1B⊤

1 )†B1 is the projection onto the gradient space, the curl projector
is PC = B2(B⊤

2 B2)†B⊤
2 and the harmonic projector PH = I−L1L†

1. Notably, we can
use a (polynomial) simplicial filter H1 to implement these operators, too.
Lemma 2.9. The projection operators (2.42) are equivalent to PG = UGU⊤

G, PG = UCU⊤
C

and PH = UHU⊤
H . As U requires the knowledge of global properties in this form the pro-

jections cannot be computed in a distributed way. However, for L1 =DG, L2 =DC, there
exists a unique {h0,α,β} such that H1 = PG. These coefficients can be found by solving
the system (2.28) with g0 = 0,gC = 0 and gG = 1; analogous arguments lead to distributed
implementations of H1 = PC and H1 = PH.

Proof. See Appendix 2.H. □

For the gradient and curl components, this can be simplified.
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Corollary 2.10. For the gradient projector PG, there exist a filter with L1 =DG,L2 = 0
and a unique {h0,α} such that H1 = PG. The solution is h0 = 0 and α = Φ−1

G 1. For the
curl projector PC, there exist a filter with L1 = 0,L2 =DC and a unique {h0,β} such that
H1 = PC. The solution is h0 = 0 and β = Φ−1

C 1

Proof. See Appendix 2.I. □

Corollary 2.10 shows a gradient projector can be build solely upon L1,d, since L1,u has
no effect in the gradient space [cf. (2.16) and (2.23)]. Similar arguments hold for the curl
projector.

Fig. 2.7 reports the performance of the subcomponent extraction based on H1 via an LS
design. We generated a synthetic edge flow f = U1f̃ with a flat spectrum f̃ = 1 on the
SC in Fig. 2.1a. We observe that as the filter order increases, the filter performs better
as its expressive power increases. Setting L1 = L2 with α = β reduces the expressive
power as expected. If filter orders obey L1 ≥ 6 and L3 ≥ 3, then the gradient (or curl)
component can be perfectly extracted, as shown in Fig. 2.4 and indicated by Lemma 2.9
and Corollary 2.10. In the general parameter setting, the decoupled LS design performs
closer to the direct LS design as the filter order grows as shown in Proposition 2.7.

2.6.2 Edge Flow Denoising

Consider a noisy edge flow f = f0 + ϵ with f0 the true edge flow and ϵ a zero-mean
white Gaussian noise. To obtain an estimate f̂ , we can solve the regularized optimization
problem [Schaub & Segarra, 2018; Schaub et al., 2021]:

min
f̂
∥f̂ − f∥22 +µ f̂⊤Pf̂ , (2.43)

with an optimal solution f̂ = HP f̂ := (I+µP)−1f . For matrix P we have two choices:

1. the edge Laplacian L1,d = B⊤
1 B1, leading to a regularizer ∥B1f̂∥22 to penalize the

flows with a nonzero divergence [Schaub & Segarra, 2018];

2. the Hodge Laplacian L1, leading to a regularizer f̂⊤L1f̂ = ∥B1f̂∥22+∥B⊤
2 f̂∥22 to

penalize the flows with a nonzero divergence or curl [Schaub et al., 2021].

OperatorHP has the frequency response H̃P (λi) = 1/(1+µλi)with (i) λi = 0 or λi ∈QG
for P = L1,d, and (ii), λi = 0 or λi ∈QG∪QC for P = L1. Thus, HP is a low pass filter
which suppresses either the gradient frequencies or the non-harmonic frequencies. We can
implement a simplicial filter to approximate HP . Fig. 2.8 shows the frequency responses
of the filter HP with P = L1, µ = 0.5 based on the grid-based design, for which we
considered 10 samples in the frequency interval [0,5.488] and the maximal eigenvalue is
estimated with 50 steps of power iterations. The grid-based filter design errors compared to
using the true eigenvalues are negligible, 0.023 and 0.004 for L= 2 and L= 4, respectively.

Note that the above optimization framework relies on the assumption that the true edge
flow is either divergence-free or harmonic, which is not always true for real-world flows
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Figure 2.8: Frequency responses of the denoising filter HP = (I + 0.5L1)−1 based on the grid design with
different filter orders.

[Jia et al., 2019; Jiang et al., 2011]. When different spectral properties of the underlying
edge flow are known, or certain spectral properties of noise are known, we are able to
deal with various situations for denoising by properly designing the simplicial filters. To
illustrate this we induced a gradient flow from a node signal with a flat spectrum and
added Gaussian noise with an error of 0.46, shown in Figs. Fig. 2.9a and Fig. 2.9b. Fig. 2.9
contrasts the denoising results of the regularized optimization methods with our filters
that preserve the gradient component based on an LS design (Corollary 2.10). As Fig. 2.9c
to Fig. 2.9f, shown in this context the low-pass filters which are implicitly defined via the
optimization procedures lead to large errors. In contrast the simplicial filters that preserve
the gradient can denoise properly. Setting α = β again reduces the performance.

2.6.3 Currency Exchange Market

Table 2.1: Currency exchange rates captured from Yahoo!Finance, not arbitrage-free.

USD EUR CNY HKD GBP JPY AUD

1 USD 1 0.8422 6.3739 7.7666 0.7207 110.1020 1.3377
1 EUR 1.1873 1 7.5681 9.2218 0.8557 130.7314 1.5883
1 CNY 0.1539 0.1321 1 1.2185 0.1131 17.2683 0.2099
1 HKD 0.1288 0.1085 0.8207 1 0.0928 14.1718 0.1723
1 GBP 1.3871 1.1685 8.8414 10.7732 1 152.6758 1.8557
1 JPY 0.0091 0.0077 0.0579 0.0706 0.0066 1 0.0122
1 AUD 0.7475 0.6299 4.7602 5.8001 0.5385 82.1837 1

A currency exchange market can be described as a network where the vertices represent
currencies, and the edges indicate the pairwise exchange rates. If all pairs of currencies are
exchangeable, the vertex set V and edge set E make up a complete graph. For any currencies
i, j,k ∈ V , we expect an arbitrary-free condition, ri/jrj/k = ri/k with the exchange rate
ri/j between i and j, i.e., the exchange path i→ j→ k provides no gain or loss over a
direct exchange i→ k. If we represent the exchange rates as edge flows fij = log(ri/j),
this can be translated into the fact that f is curl-free, i.e., fij +fjk +fki = 0. Therefore, an
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Figure 2.9: Gradient flow denoising. (a) Edge flow f0 induced by a node signal with a flat spectrum. (b) The
noisy observation f with error e = 0.46. (c-d) Denoising with the low-pass filter HP with (c) P = L1 Schaub
et al. [2021], or (d) P = L1,d Schaub & Segarra [2018] leads to an even larger error of e = 0.70 or e = 0.73,
respectively. (e) Denoising by a gradient based simplicial filter H1 with an order L1 = L2 = 4 and α = β,
yields a much better result with error e = 0.39. (f) Denoising by a general filter H1 with α , β provides an
even smaller error with e = 0.23, even for a lower filter order L1 = L2 = 1.

ideal exchange edge flow is a gradient flow. This idea was exploited in Jia et al. [2019]; Jiang
et al. [2011] to assess arbitrage possibilities in exchange markets, and provide arbitrage
free exchange rates, respectively.

Here, we illustrate how we can analogously remove arbitrage opportunities via a simplicial
filter that preserves only the gradient component of a given exchange rate flow. For a
complete graph, there are two distinct eigenvalues, zero and N0, for the lower or upper
Hodge Laplacian. Then, based on Corollary 2.10 we can extract the gradient component
via H1 = 1

N0
L1,d. Similarly, filter H1 = 1

N0
L1,u can extract the curl component, which

indicate possible arbitrage opportunities.

In Table 2.1, we show a real-world exchange market of seven currencies at 2021/07/12
10:30 UTC from the Currency Converter Yahoo!Finance. We built an SC formed by the
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Table 2.2: The gradient component, arbitrage-free, provides a fair market.

USD EUR CNY HKD GBP JPY AUD

1 USD 1 0.8422 6.3738 7.7665 0.7208 110.0171 1.3385
1 EUR 1.1874 1 7.5680 9.2216 0.8559 130.6292 1.5893
1 CNY 0.1569 0.1321 1 1.2185 0.1131 17.2608 0.2100
1 HKD 0.1288 0.1084 0.8207 1 0.0928 14.1656 0.1723
1 GBP 1.3873 1.1684 8.8425 10.7746 1 152.6286 1.8557
1 JPY 0.0091 0.0077 0.0579 0.0706 0.0066 1 0.0122
1 AUD 0.7471 0.6292 4.7618 5.8022 0.5385 82.1919 1

seven currencies and all the 2-, 3-cliques, where the edge flow f is the logarithm of the
exchange rates in the upper triangular part without the diagonal in Table 2.1. If one unit
of currency yields more than 0.3% benefit or loss after two successive exchanges, we say
the corresponding exchange rates are non-arbitrage-free. By computing the curl B⊤

2 f ,
we can identify six such triangles (up to machine precision) that are not arbitrage-free.,
e.g., USD-JPY-AUD (1 USD would yield 1.0041 USD), EUR-JPY-AUD, and HKD-GBP-JPY.
By applying a filter H1 = 1

N0
L1,d on the exchange rate flows, we can extract its gradient

flow, leading to the arbitrage-free exchange rate flow in Table 2.2. This yields essentially
the same results as solving the LS optimization problem considered in Jiang et al. [2011].
This simple example demonstrates the use of simplicial filters to generate an efficient
financial market. Especially in a complete market, the form of the filters is trivial and the
computational cost is much smaller compared to solving the LS problems.

2.6.4 London Street Network: Fast PageRank of Edges
PageRank, as a ranking scheme for web pages, can be studied in terms of a random walk
on a graph, which can be used to measure the centrality of a node. PageRank was extended
to the edge space to assess the topological importance of an edge in Schaub et al. [2020].
The input edge flow f is an indicator vector which has value one on the edge of interest
and zeros on the rest, then a PageRank vector π follows the linear system [Schaub et al.,
2020, Def. 6.2], (γI + L1,n)π = f , with L1,n being the normalized 1-Hodge Laplacian2
[Schaub et al., 2020, Def. 3.3] and γ > 0. The solution is π = (γI + L1,n)−1f with the
PageRank operator HPR := (γI+L1,n)−1, which does not require to construct the edge
space random walk matrix [Schaub et al., 2020, Thm. 3.4] compared to a power iteration
implementation. For an indicator edge flow f of edge i, the absolute values of the entries of
π are the influencemeasures edge i has on the edges and the signs the influence orientations
w.r.t. the reference orientations [Schaub et al., 2020]. Furthermore, the overall importance
of an edge can be assessed with the d2-norm ∥π∥2 of its PageRank vector π. By extracting
the gradient component πG,we can study the importance of this edge w.r.t. the gradient
space via its d2-norm ∥πG∥2 or relative norm ∥πG∥2

∥π∥2
; likewise for the curl and harmonic

components.
2L1,n admits a similarity transformation to its symmetric version, so its eigenvalues are real and carry the
simplicial frequency notion.
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Figure 2.10: PageRank analysis of the street network of London. Top left: network illustration. Top right:
Frequency responses of the grid-based designed filter of order 9 and the Chebyshev filter of order 61 w.r.t. the
desired continuous frequency response. Bottom left: Spectral norm error of the Chebyshev polynomial filter
of different orders. Bottom right: Continuous frequency response errors of the Chebyshev filter of different
orders.

Experiment setup. The operator HPR can be interpreted as a low pass filter which
attenuates the high gradient and curl frequencies. But to implement it we need to invert
a matrix. Instead, we propose here a faster variant via a simplicial filter H1 := H1(L1,n)
built on the normalized Hodge Laplacian. To find the filter coefficients, we considered a
grid-based design and a Chebyshev polynomial with a desired response, g(λ) = 1

γ+λ with
λ ∈ [0,1] and γ = 0.01. We implemented the PageRank operator in the street network of
London with 82 crossings (nodes), 130 streets (edges) and 12 triangles, as shown in the top
left of Fig. 2.10 [Schaub et al., 2014; Youn et al., 2008]. We considered a grid-based design
with 200 samples within the eigenvalue interval and a filter order of 9 and implemented
the Chebyshev polynomials H1 of different orders.

Results. From Fig. 2.10, we see that the performance of the grid-based design decreases
heavily when the filter order is larger than 9 due to the numerical instability, while a
Chebyshev design allows a more accurate design as shown in Fig. 2.10.

We then computed the PageRank results of all edges with a Chebyshev filter of order 61
and obtained the norms of their three components in the absolute and relative senses. From
Fig. 2.11, we can identify the most influential streets (dark grey) in the network, as the
indicator flow on these streets induce a PageRank vector with the largest total norm. The
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Figure 2.11: PageRank vectors analysis. The scattered squares are the edges whose PageRank vectors contain
the top-five largest absolute (Top) and relative (Bottom) total norm, gradient, curl and harmonic norms. The
left figures show the PageRank values w.r.t. edge indices. The rights figures show the highlighted edges in the
network with shaded grey indicating the total norm, green the gradient norm, blue the curl norm and red the
harmonic norm.

streets (green) that have the biggest influence on the gradient space are the ones on which
a traffic change leads to congestion on the intersections as the traffic flows on them have a
large divergence. The red streets induce the most impact on the harmonic space and the
blues ones on the curl space, where the traffic flows tend to induce a global or local cyclic
flow, thus a small chance of congestion. The influences are measured in a relative sense in
the bottom figures, and we notice that most streets would not cause a large influence on
the curl space.

Finally, we show the simplicial PageRank vector of four edges to assess where their in-
fluences are concentrated in Fig. 2.12. Edge 19 (top left), sitting in the gradient space,
has a large influence in terms of gradient flow components on the surrounding edges to
which congestion on edge 19 would spread, as shown in Fig. 2.11. Edge 27 (top right) has a
large influence on edges that form 1-dimensional “hole” [Lim, 2020], containing mostly
harmonic components. This may imply that a traffic change on edge 27 would less likely
cause congestion. Edge 45 (bottom left), whose PageRank result has a large total norm, as
seen in Fig. 2.11, acts similar as edge 27. Edge 96 (bottom right) induces smaller influences
than the other three, but they reach further in the network. The most influenced edges are
its direct upper neighbors, as also seen in the bottom (blue) of Fig. 2.11, where congestion
would rather not happen.
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Figure 2.12: Examples of the PageRank vectors of four edges. The edge width and color indicates the mag-
nitude of the PageRank result on that edge. The labeled edges are the chosen edges, also with the largest
PageRank results.

2.6.5 Chicago Road Network: Gradient Component Extraction
We now conduct subcomponent extraction on a real-world larger network. On the Chicago
road network with 546 nodes, 1088 edges, and 112 triangles [Stabler et al., 2018], we perform
the gradient component extraction of the measured traffic flow, which is not divergence-
free, via filter H1 built on the lower Hodge Laplacian. It is challenging to perform the filter
design in this setting because some simplicial frequencies are close to each other, leading
to the ill-conditioning of the LS design. This can be avoided by the Chebyshev polynomial
design. This requires a continuous desired frequency response to perform the gradient
component extraction, which ideally is an indicator function 1λ>0 with λ ∈ [0,λG,max].
Here we use the logistic function gG(λ) = 1

1+exp−k(λ−λ0) with the growth rate k > 0 and
the midpoint λ0. If the smallest gradient frequency is close to 0, a large k and a small λ0
are required to achieve a good approximation of the ideal indicator function.

We applied different filter design methods. For the LS-based methods, we set a filter order
of 9 to avoid ill-conditioning and considered the decoupled solver. Moreover, we treated
the eigenvalues with a difference smaller than 0.3 as the same for the LS design, leading to
30 “different” eigenvalues. For the grid-based design, we uniformly sampled 100 points in
the interval [0,λG,max] with λG,max = 10.8 approximated by a 50-step power iteration.
Lastly, we set k = 100 and λ0 = 0.01 for the logistic function in the Chebyshev polynomial
design.
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Figure 2.13: Chicago road network gradient component extraction. (a): Filter frequency responses with differ-
ent designs. (b): Left: SFT of the extracted gradient component in frequency range [0,1]. Right: Approxima-
tion errors of Chebyshev filters of different orders and the extracted gradient component.

As seen in Fig. 2.13a, the Chebyshev polynomial of order 39 only has one frequency
response smaller than 0.9 at the smallest gradient frequency, while at the remaining
frequencies, it is able to well preserve the gradient component. The other methods have
a poorer performance especially at small gradient frequencies. We then compared the
gradient component extracted by above grid-based and Chebyshev polynomial filters.
Fig. 2.13b (left) reports the SFT of the extracted flows at frequencies smaller than 1. The
Chebyshev polynomial has a good extraction ability as it performs well even at the very
small frequencies where the grid-based design fails. Fig. 2.13b (right) shows the filter design
and the extraction errors of the Chebyshev polynomial of different orders. The extraction
error cannot be further reduced because the traffic flow contains large components at the
small frequencies and the logistic function, after all, is an approximate of the indicator
function.

2.7 Conclusion
Weproposed a simplicial convolutional filter as amatrix polynomial of theHodge Laplacians
for simplicial signal processing. It generates an output as a linear combination of the shifted
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simplicial signals. This shift-and-sum operation is analogous to the convolutions of time
series, images and graph signals and allows for a distributed filter implementation. In the
frequency domain, the filter acts as a pointwise multiplication respecting the convolution
theorem. Furthermore, the lower and upper Hodge Laplacians encode lower and upper
adjacencies, respectively. For an edge flow, its lower shifting propagates the flow to its
neighbors via the common incident nodes, while the upper one via the common triangles.
By assigning two different sets of coefficients on the lower and upper parts in the filter,
we can differentiate the lower and upper adjacencies. Via the Hodge decomposition, we
see that this corresponds to an independent control of the filter on the gradient and curl
spaces in the frequency domain. To achieve a desired frequency response, different filter
design approaches are considered with pros and cons. The filter provides a faster and
distributed solution for subcomponent extraction, simplicial signal denoising and other
tasks in exploiting the higher-order connectivities of the network.
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Appendix

2.A Proof of Proposition 2.1
Due to the distributivity of matrix-vector multiplication, we have L1,d(af1 + bf2) =
aL1,df1 + bL1,df2, and L1,u(af1 + bf2) = aL1,uf1 + bL1,uf2. Then, by working out the
expression H1(af1 + bf2) and using the distributivity w.r.t the addition, the linearity
proof completes. Since we have Ll

1,dL1,d = L1,dLl
1,d, and similarly for for L1,u, and

L1,dL1,u = 0, the shift-invariance holds. The same proof applies to the general case with
k , 1.

2.B Proof of Proposition 2.2
Since the permutation matrix Pk is orthogonal, i.e., PkP⊤

k = P⊤
k Pk = I, we have that

(PkLk,dP⊤
k )l1 = PkLl1

k,dP⊤
k , and similarly (PkLk,uP⊤

k )l2 = PkLl2
k,uP⊤

k . Thus, we can
express the permuted simplicial filter as

H̄k = h0I+
L1∑

l1=1
αl1(PkLk,dP⊤

k )l1 +
L2∑

l2=1
βl2(PkLk,uP⊤

k )l2

= h0I+
L1∑

l1=1
αl1PkLl1

k,dP⊤
k +

L2∑
l2=1

βl2PkLl2
k,uP⊤

k

= Pk

(
h0I+

L1∑
l1=1

αl1Ll1
k,d +

L2∑
l2=1

βl2Ll2
k,u

)
P⊤

k

= PkHkP⊤
k .

(2.44)

The output on the permuted SC can bewritten as x̄k
o := H̄kx̄k = H̄k(Pkxk) = PkHkP⊤

k Pkxk =
PkHkxk := Pkxk

o . The proof completes.

2.C Proof of Proposition 2.3
The diagonal matrix Dk satisfies that DkD⊤

k = D⊤
k Dk = I. Following from that, we

have that (DkLk,dD⊤
k )l1 = DkLl1

k,dD⊤
k , and similarly (DkLk,uD⊤

k )l2 = DkLl2
k,uD⊤

k .
Following the same procedure in (2.44), we have

H̄k = h0I+
L1∑

l1=1
αl1(DkLk,dD⊤

k )l1 +
L2∑

l2=1
βl2(DkLk,uD⊤

k )l2 = DkHkD⊤
k . (2.45)
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Thus, the filter output on the reoriented simplices can be expressed as x̄k
o := H̄kx̄k =

H̄k(Dkxk) = DkHkxk := Dksk
o . The proof completes.

2.D Proof of Proposition 2.5
We show the proof for each item.

1) First, we show that the image of L1,d is equivalent to the gradient space im(B⊤
1 ).

1. To show im(L1,d)⊆ im(B⊤
1 ): From L1,d = B⊤

1 B1, for any non-zero x ∈ im(L1,d),
we have x = L1,dy, and we can always find a vector z = B1y ∈ RN0 such that
x = B⊤

1 z;

2. To show im(B⊤
1 )⊆ im(L1,d): for every non-zero x ∈ im(B⊤

1 ), we can find some
y ⊥ ker(B⊤

1 ) such that x = B⊤
1 y , 0. This implies y ∈ im(B1), so there exists

some z ∈ RN1 such that y = B1z and x = B⊤
1 B1z = L1,dz, and hence im(B⊤

1 )⊆
im(L1,d).

Combining (i) and (ii), we have that im(L1,d) = im(B⊤
1 ).

Second, we show that the eigenvectors UG of L1,d associated with nonzero eigenvalues
span the image of L1,d. As L1,d is positive semidefinite (PSD), thus, diagonalizable, the
geometric multiplicity of every eigenvalue equals to the algebraic multiplicity. That is, all
the eigenvectors are linearly independent and form an eigenbasis. Then, matrix UG has a
full column rank. Furthermore, for any x ∈ im(L1,d), we have x = L1,dy = UGΛGU⊤

Gy,
i.e., x ∈ im(UG) and im(L1,d) ⊆ im(UG). Due to dimim(L1,d) = rank(L1,d) = NG,
matrix UG spans the image of L1,d and the gradient space im(B⊤

1 ).

2) The proof of 2) follows similarly as the proof of 1).

3) For arbitrary eigenvectorsuG inUG anduC inUC, we haveuG = 1
λG

L1,duG anduC =
1

λC
L1,uuC. Thus, from (2.2), their inner product follows u⊤

GuC = 1
λGλC

u⊤
GL1,dL1,uuC =

0, i.e., UG ⊥ UC. Moreover, from the definition of L1, matrix [UG UC] contains the
eigenvectors of L1 associated with nonzero eigenvalues. The Hodge decomposition in-
dicates that im(B⊤

1 )⊕ im(B2) = im(L1). By combining with 1) and 2), we have that
im(B⊤

1 ) = im(UG) and im(B2) = im(UC).

4) As L1 is PSD, the eigenvectors associated to zero eigenvalues are linearly indepen-
dent. Any vector x ∈ ker(L1) follows L1x = 0, which means x is an eigenvector asso-
ciated with an eigenvalue 0, i.e., ker(L1) = im(UH) with dimension NH. Moreover, we
have ker(L1) = ker(L1,d)∩ker(L1,u) from the definition of L1, then the columns of UH
can be used as eigenvectors of L1,d or L1,u associated with zero eigenvalues. From 3)
and ker(L1) = im(UH), we have UH ⊥UG and UH ⊥UC. Thus, matrix [UH UC] (or
[UH UG]) provides the eigenvectors of L1,d (or L1,u) associated with zero eigenvalues,
and the proof completes.

5) From 3) and 4), we have that matrix U1 collects all eigenvectors of L1. From 1), 2), and
4), we have that U1 provides all eigenvectors for L1,d and L1,u.
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2.E Proof of Proposition 2.6
With condition i), we can eigendecompose the operator G as diag(g) = U⊤

1 GU1, then
the equivalence between G and H1 can be achieved through a set of linear equations in
the spectral domain, i.e., H1(λi) = gi, for all i = 1, . . . ,N1. Based on condition ii), this
set of linear equations is equivalent to linear system (2.28) and (2.29) with 1+DG +DC
equations. With the filter order requirement in condition iii), the Vandermonde matrices
ΦG and ΦC have full row rank. Thus, there exist at least one solution to problem (2.28)
and the proof completes.

2.F Proof of Proposition 2.7
The cost function J in problem (2.29) is convex w.r.t. variables, h0, α and β. Thus, we
could find the optimality condition by setting the gradients of the cost function w.r.t. the
three variables to zeros, given by


∇h0J = h0−g0 +(h01+ΦGα−gG)⊤1+(h01+ΦCβ−gC)⊤1 = 0,
∇αJ = Φ⊤

G(h01+ΦGα−gG) = 0,
∇βJ = Φ⊤

C(h01+ΦCβ−gC) = 0.
(2.46)

First, consider the case where we have that ∥ΦGΦ†
G−I∥F = 0 and ∥ΦCΦ†

C−I∥F = 0, i.e.,
ΦGΦ†

G = I and ΦCΦ†
C = I, then the solution (2.30) results in that (ĥ01+ΦGα̂−gG) = 0

and (ĥ01+ΦCβ̂−gC) = 0, which satisfies the optimality condition (2.46).

Second, consider the general case that ∥ΦGΦ†
G− I∥F, 0 and ∥ΦCΦ†

C− I∥F, 0. By
substituting the solution (2.30) into the optimality condition (2.46), we have


∇h0J =

(
(ΦGΦ†

G− I)(gG−g01)
)⊤1+

(
(ΦCΦ†

C− I)(gC−g01
)⊤1,

∇αJ = Φ⊤
G(ΦGΦ†

G− I)(gG−g01),
∇βJ = Φ⊤

C(ΦCΦ†
C− I)(gC−g01).

(2.47)

For any matrix A ∈ Rm×n with singular values σi, i = 1, . . . ,min{m,n}, we have that
∥A∥F =

(∑min{m,n}
i=1 σ2

i

) 1
2 . If it holds ∥ΦGΦ†

G−I∥F→ 0 and ∥ΦCΦ†
C−I∥F→ 0, i.e., the

Frobenius norms approach to zero, the number of trivial (zero) singular values ofΦGΦ†
G−I

and ΦCΦ†
C−I increases. Accordingly, the number of trivial entries in (ΦGΦ†

G−I)(gG−
g01) and (ΦCΦ†

C− I)(gC−g01) increases, which corresponds to a suboptimal condition
of (2.46), i.e., the gradients ∇h0J(ĥ0,α̂, β̂)→ 0, ∇αJ(ĥ0,α̂)→ 0 and ∇βJ(ĥ0, β̂)→ 0.
The proof completes.
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2.G Proof of Proposition 2.8
Since the operator G corresponds to the desired continuous harmonic, gradient and curl
frequency responses, it can be diagonalized by U1. Therefore, we have that

∥G−Hc∥2 = ∥U1(g(Λ)− H̃1(Λ))U⊤
1 ∥2

= ∥g(Λ)− H̃1(Λ)∥2= max
i=1,...,N1

|g(λi)− H̃1(λi)|
(2.48)

where the diagonal matrix g(Λ) has entries g(λi) = g0 for λi ∈ QH, g(λi) = gG(λi) for
λi ∈QG and g(λi) = gC(λi) for λi ∈QC. The frequency response H̃1(λi) for λi ∈Q is
given in (2.39). Moreover, based on the definition of B1(L1) and B2(L2) we have that

max
i=1,...,N1

|g(λi)− H̃1(λi)| ≤max
{
B1(L1),B2(L2)

}
=B. (2.49)

The proof completes.

2.H Proof of Lemma 2.9
We first show the equivalence between the two projection operator forms. From the
Hodge decomposition, the gradient, the curl and the harmonic components are in the
subspaces im(B⊤

1 ), im(B2) and ker(L1), respectively. Furthermore, from Proposition 2.5,
we have that im(B⊤

1 ) = im(UG), im(B2) = im(UC) and ker(L1) = im(UH). Thus, each
subcomponent can be obtained as the orthogonal projection of f onto the subspace spanned
by the eigenbasis, i.e., the LS estimate. The gradient projection is PG := UGU⊤

G, the curl
one PC := UCU⊤

C and the harmonic one PH := UHU⊤
H . This can be shown via the SFT

as well, i.e., fG = UGf̃G = UGU⊤
Gf , likewise for the other two.

Second, the simplicial filter H1 can implement the gradient projector PG = UGU⊤
G, if

and only if we have that

H1 = UGU⊤
G = [U⊥

G UG]
[
0

ING

][
(U⊥

G)⊤

U⊤
G

]
, (2.50)

with U⊥
G = [UH UC]. We have that H1 = U1H̃1U⊤

1 from (2.24). Thus, (2.50) is equivalent
to problem (2.28) with g0 = 0, gC = 0 and gG = 1. With L1 =DG and L2 =DC, there
admits a unique solution {h0,α,β} to system (2.28). Similar procedure can be followed
for the implementation of the curl and harmonic projectors. The proof completes.

2.I Proof of Corollary 2.10
To implement the projector PG via H1 with L2 = 0 (β = 0), from (2.50), it is equivalent to
set g0 = 0 for λi ∈QH∪QC and g(λi) = 1 for λi ∈QG in (2.25), i.e., g = [0 1⊤

DG
]⊤. This

returns problem (2.28) without ΦC and β, i.e.,

min
h0,α

∥∥∥∥[1 0
ΦG

][
h0
α

]
−g
∥∥∥∥2

2
. (2.51)
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If L1 = DG, the system matrix is square and any two rows are linearly independent, it
admits a unique solution of h0 = 0 and α = Φ−1

G 1. Similar procedure can be followed for
the curl projector PC. The proof completes.

2.J Illustrations of Hodge decomposition and SFT
on aother SC

In addition to the illustrations previously, we here demonstrate the Hodge decomposition
in Appendix 2.J and the simplicial Fourier basis and frequency in Fig. 2.15 on the SC in
Fig. 1.3.

(a) Edge flow (b) Gradient flow (c) Curl flow (d) Harmonic flow

Figure 2.14: (a) An edge flow where we denote its divergence and curl in purple and orange, respectively. (b)-
(d) The Hodge decomposition of the edge flow in (a). The gradient flow is the gradient of some node signal (in
blue) and is curl-free. The curl flow can be obtained from some triangle flow (in red), and is divergence-free.
The harmonic flow has zero divergence and zero curl, and is circulating around the hole {1,3,4}. Note that in
this figure, the flow numbers are rounded upper to two decimal places. Thus, at some nodes or triangles with
zero-divergence or zero-curl, the divergence or curl might not be exactly zero.

(a) uG,1,λG,1(0.80) (b) uG,2,λG,2(1.61) (c) uG,3,λG,3(2.43) (d) uG,4,λG,4(3.96) (e) uG,5,λG,5(5.12)

(f) uG,6,λG,6(6.08) (g) uC,1,λC,1(1.59) (h) uC,2,λC,2(3.00) (i) uC,3,λC,3(4.41) (j) uH,λH(0)

Figure 2.15: (a)-(f) Six gradient frequencies and the corresponding Fourier basis. We also annotate their
divergences, and we see that these eigenvectors with a small eigenvalue have a small magnitude of total
divergence, i.e., the edge flow variation in terms of the nodes. Gradient frequencies reflect the nodal variations.
(g)-(i) Three curl frequencies and the corresponding Fourier basis. We annotate their curls and we see that
these eigenvectors with a small eigenvalue have a small magnitude of total curl, i.e., the edge flow variation
in terms of the triangles. Curl frequencies reflect the rotational variations. (j) Harmonic basis with a zero
frequency, which has a zero nodal and zero rotational variation.
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3
Hodge-Aware Convolutional

Learning on Simplicial
Complexes

In the previous chapter, we introduced the simplicial convolutional filters that are based on the
Hodge Laplacians. They are able to filter the simplicial signals independently in the different
Hodge subspaces. This linear convolution operation allows us to construct neural network
models to perform learning on simplicial complexes, in analogy to how graph neural networks
are built upon graph convolutions. In this chapter, we consider a more general framework,
simplicial complex convolutional neural networks (SCCNNs), where the learning is performed
over simplices of different orders. The success of neural network models has been attributed
to their ability to exploit the symmetry of the data, and their stability against perturbations.
This motivates us to investigate the properties of SCCNNs in terms of their equivariance and
stability, and more importantly, the Hodge decomposition. This chapter is based on the work
of Yang & Isufi [2023]; Yang et al. [2022a].

3.1 Introduction
In the line of geometric deep learning [Bronstein et al., 2021], there is a growing interest
in learning from data defined on simplicial complexes. The motivation behind this comes
from two limitations of standard graph neural networks (GNNs). First, graphs are limited
to model pairwise interactions between data entites on nodes, yet polyadic (multi-way)
interactions often arise in real-world networks [Battiston et al., 2020; Benson et al., 2021;
Torres et al., 2021], such as friendship networks [Newman et al., 2002], collaboration
networks [Benson et al., 2018], gene regulatory networks [Masoomy et al., 2021]. Second,
graphs are often used to support signals on the nodes, and standard graph signal processing
and GNN approaches often revolve around signals and features on nodes. Yet, signals
involved with multiple entities are less researched compared to signals on nodes (with one
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entity). They arise as signal flows on edges, signals on triangles and so on. For example, in
physical networks, we may encounter water flows in a water supply network [Money et al.,
2022], traffic flows in a road network [Jia et al., 2019], trading flows in financial networks
[Lim, 2020] and information flows in brain networks [Anand et al., 2022], as well as in
human-generated networks, we have collaboration data, such as triadic collaborations in
coauthorship networks [Benson et al., 2018].

Simplicial complexes are a popular higher-order network model and have been shown
effective to address both limitations of graph-based models [Bick et al., 2023]. They are
composed of topological objects, namely, nodes, edges, triangles, etc., which are simplices
of different orders. Simplicial complexes naturally describe more topological (higher-order)
relationships in networks, thus, having more topological expressive power than graphs.
This has been the main motivation of recent neural networks developed on simplicial
complexes [Bodnar et al., 2021b; Bunch et al., 2020; Chen et al., 2022d; Ebli et al., 2020;
Giusti et al., 2022; Roddenberry & Segarra, 2019; Roddenberry et al., 2021]. We also refer
readers to the recent surveys [Besta et al., 2024; Papamarkou et al., 2024]. In analogy to
standard GNNs relying on the adjacency between nodes, the central idea behind these
works is to rely on the relationships between simplices to enable learning. Such relations
can be twofold: first, two simplices can be lower and upper adjacent to each other, e.g., an
edge can be (lower) adjacent to another via a shared node, and can also be (upper) adjacent
to another by locating in a common triangle; and second, there exist inter-simplicial
couplings (or simplicial incidences) between simplices of different orders, as shown in
Fig. 4.1a. The aforementioned works mainly vary in terms of either message-passing or
convolutional flavor, or the type of simplicial relationships relying, either on only simplicial
adjacencies or on both adjacencies and incidences.

Furthermore, signals can be defined on simplices to model the data related to multiple
entites in networks. This has been the main focus of topological signal processing literature
[Barbarossa & Sardellitti, 2020; Schaub et al., 2021; Yang et al., 2022b]. The celebrated
combinatorial Hodge decomposition arising from discrete calculus [Grady & Polimeni, 2010;
Lim, 2020] provides a unique and characteristic decomposition of simplicial signals into
three components. This is particularly intuitive for edge flows which allows their decom-
position into gradient flows, curl flows and harmonic flows, that are, respectively, curl-free,
divergence-free or both. These notions from discrete calculus interestingly allow us to
capture some physical properties of the simplicial signals, such as the conservation laws
[Grady & Polimeni, 2010]. More importantly, this decomposition offers a tool to better
analyze simplicial signals, as reported in statistical ranking problems, financial exchange
markets [Jiang et al., 2011], traffic networks [Jia et al., 2019], brain networks [Anand et al.,
2022] and game theory [Candogan et al., 2011]. We hypothesize it will further promote
better principled and effective learning methods on simplicial complexes.

Given this context, we reckon that the aforementioned works on simplicial neural networks
mostly focus on the pure topological aspect of simplicial complexes. It lacks theoretical
analyses of their learning capabilities from the Hodge spectral perspective. Also, since
SCs are often built from data and are prone to estimation uncertainty, the learning on SCs
benefits from a stability analysis to investigate their robustness against perturbations on
the simplicial topologies. Thus, in this chapter, we propose a more general and unified
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framework, namely, simplicial complex convolutional neural network (SCCNN), and we
focus on the following three theoretical aspects. Our contributions are as follows:

• In Section 3.2 we introduce SCCNN and emphasize its three principles, namely,
uncoupling the lower and upper simplicial adjacencies, accounting for the inter-
simplicial couplings, and performing higher-order convolutions. We then use the
Dirichlet energy minimization on SCs to understand how uncoupling the lower and
upper adjacencies in Hodge Laplacians, as well as the inter-simplicial couplings can
mitigate simplicial oversmoothing.

• In Section 3.3, we characterize the spectral behavior of SCCNN and its expressive
power under the help of spectral simplicial theory [Barbarossa & Sardellitti, 2020;
Steenbergen, 2013; Yang et al., 2021]. We show that an SCCNN performs independent
and expressive learning in the three subspaces of the Hodge decomposition, which
are invariant under its learning operators. This Hodge-awareness (or Hodge-aided
bias) allows for effective and rational learning on SCs compared to MLPs or simplicial
message-passing networks [Bodnar et al., 2021b].

• In Section 3.4, we obtain a theoretical stability bound on the SCCNN outputs against
small perturbations on the simplicial connections. This allows us to see how the
three principles and other network factors can affect the stability, as well as the
limitations of SCCNNs. This analysis in turn guides the design of convolutional
architectures.

In Section 3.5, we validate our theoretical findings and highlight the effect of the three
principles, the need for the Hodge-aware learning, as well as the stability, based on different
simplicial tasks including recovering foreign currency exchange (forex) rates, predicting
triadic and tetradic collaborations, and ocean current trajectories. Finally, we conclude the
chapter with a discussion on this work and its relations to existing works.

3.2 Simplicial Complex CNNs
We first introduce the general convolutional architecture on SCs, then discuss the propreties
of SCCNN and study the effects of the three principles from an energy minimization
perspective.

In an SC, taking xl−1
k−1,x

l−1
k and xl−1

k+1 as inputs, an SCCNN at layer l = 1, . . . ,L computes
the k-simplicial output xl

k via a map

SCCNNl
k : {xl−1

k−1,x
l−1
k ,xl−1

k+1}→ xl
k, xl

k = σ(Hl
k,dxl−1

k,d +Hl
kxl−1

k +Hl
k,uxl−1

k,u )
(3.1)

with

Hk =
Td∑

t=0
wk,d,tLt

k,d +
Tu∑

t=0
wk,u,tLt

k,u, Hk,d =
Td∑

t=0
w′

k,d,tLt
k,d, Hk,u =

Tu∑
t=0

w′
k,u,tLt

k,u.

(3.2)
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(a) SC example (b) Lower edge conv. (c) Upper edge conv. (d) Inter-simplicial locality

Figure 3.1: (a) An SC where arrows indicate the reference orientations of edges and triangles. 2-simplices are
(filled) triangles shaded in green and open triangle {1,3,4} is not in the SC. (b) Lower convolution via H1
and H1,d on edge e1. (c) Upper convolution via H1 and H1,u on e1. (d) Node 1 (in black) contains informa-
tion from its neighbors {2,3,4} (nodes in red), and projected information from edges which contribute to
these neighbors (denoted by arrows in red from edges to nodes), and from triangles {t1, t2, t3} which con-
tribute to those edges (denoted by double arrows in red from triangle centers to edges). This interaction is the
coupling between the intra- and the extended inter-simplicial locality.

Here, Hk denotes a simplicial convolutional filter (SCF, [Yang et al., 2022b]) with two
sets of learnable coefficients {wk,d,t},{wk,u,t}, while Hk,d and Hk,u are the lower and
upper SCFs, respectively. Moreover, xl−1

k,d = B⊤
k xl−1

k−1 and xl−1
k,u = Bk+1xl−1

k+1 are the
lower and upper projections from (k±1)-simplices via incidence relations to k-simplices,
respectively, and σ(·) is an elementwise nonlinearity. The convolution operations in this
SCCNN can be understood as follows: 1) The previous k-simplicial output xl−1

k is passed
to an SCF Hl

k of orders Td,Tu, which performs a linear combination of the signals from
the lower-adjacent (up to Td-hop) and upper-adjacent (up to Tu-hop) simplices. 2) The
previous k±1-simplicial outputs xl−1

k±1 are first projected to k-simplices, which are then
convolved using a lower SCF and an upper SCF, respectively.

We give two examples where the first is a SCCNN on a SC of order two, and the second is
the form of SCCNN with multi-features.
Example 3.1. For k = 0,1,2, a SCCNN layer reads as

xl
0 = σ(Hl

0xl−1
0 +Hl

0,uB1xl−1
1 ),

xl
1 = σ(Hl

1,dB⊤
1 xl−1

0 +Hl
1xl−1

1 +Hl
1,uB2xl−1

2 ),

xl
2 = σ(Hl

2,dB⊤
2 xl−1

1 +Hl
2xl−1

2 ).

(3.3)

Recursively, we see that a SCCNN layer takes as inputs {xl−1
0 ,xl−2

0 ,xl−2
1 ,xl−2

2 } to com-
pute xl

0. One may find this familar as some type of skip connections in GNNs [Xu et al.,
2018b].
Example 3.2 (Multi-Feature SCCNN). Amulti-feature SCCNN at layer l takes {Xl−1

k−1,X
l−1
k ,

Xl−1
k+1} as inputs, each of which has Fl−1 features, and generates an output Xl

k with Fl

features as

Xl
k = σ

(
Td∑

t=0
Lt

k,dB⊤
k Xl−1

k−1W′l
k,d,t +

Td∑
t=0

Lt
k,dXl−1

k Wl
k,d,t

+
Tu∑

t=0
Lt

k,uXl−1
k Wl

k,u,t +
Tu∑

t=0
Lt

k,uBk+1Xl−1
k+1W′l

k,u,t

) (3.4)
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where Lt indicates the matrix t-power of L, while superscript l indicates the layer index.

In Fig. 3.1, we provide an example of SCCNN for the edge case k = 1. We focus on edge e1
and consider the cases Td = Tu = 2. On edge e1, the SCF H1 linearly combines the signals
from its direct lower neighbors (edges in blue) and two-hop lower neighbors (edges in
purple), as shown in Fig. 3.1b. It also combines the signals from the direct upper neighbors
(edges in red) and two-hop upper neighbors (edges in orange), as shown in Fig. 3.1c. At the
same time, the signals on nodes are projected on the edges, denoted by arrows in blue and
purple from nodes to edges in Fig. 3.1b, which are then combined to edge e1 by the lower
SCF H1,d. The signals on triangles are projected on the edges as well, denoted by double
arrows in red and orange in Fig. 3.1c, which are combined to edge e1 by the upper SCF
H1,u.

This architecture subsumes the convolutional learning methods on SCs in Bunch et al.
[2020]; Chen et al. [2022d]; Ebli et al. [2020]; Roddenberry et al. [2021]; Yang et al. [2022a;c].
We refer to Appendix 3.B for a detailed discussion. Particularly, we here emphasize on the
key three principles of an SCCNN layer:

(P1) It uncouples the lower and upper parts in the Hodge Laplacian. This leads to an
independent treatment of the lower and upper adjacencies, achieved by using two
sets of learnable weights. We shall see in Section 3.3 that how this relates to the
independent and expressive learning in the Hodge subspaces.

(P2) It accounts for the inter-simplicial couplings via the incidence relations. The projec-
tions xk,d and xk,u carry nontrivial information contained in the faces and cofaces
of simplices (by Hodge decomposition [cf. Section 2.4.1]).

(P3) It performs higher-order convolutions. We consider Td,Tu ≥ 1 in SCFs which leads
to a multi-hop receptive field on SCs.

In short, each SCCNN layer propagates information across SCs based on two simplicial
adjacencies and two incidences in a multi-hop fashion.

3.2.1 Properties
Simplicial locality. The simplicial convolutions admit an intra-simplicial locality where
the output Hkxk is localized in Td-hop lower and Tu-hop upper k-simplicial neighbor-
hoods [Yang et al., 2022b]. An SCCNN preserves such property as σ(·) does not alter the
information locality. It also admits an inter-simplicial locality between k- and (k± 1)-
simplices due to the inter-simplicial couplings. This further extends to simplices of orders
k± l if L≥ l because Bkσ(Bk+1) , 0 [Schaub et al., 2021]. Moreover, the intra- and inter-
simplicial localities are coupled in a multi-hop way through higher-order convolutions
such that, for example, a node not only interacts with its incident edges and the triangles
including it, but also with those further hops away, as shown in Fig. 3.1d. We refer to
Appendix 3.A.1 for a more formal discussion.

Complexity. An SCCNN layer has a parameter complexity of order O(Td +Tu) and a
computational complexity O(k(nk +nk+1) +nkmk(Td +Tu)), which are linear in the
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simplex dimensions. Here,mk is the maximum number of neighbors for k-simplices. We
refer to Appendix 3.A.2 for more details.

3.2.2 Symmetries of SCs and simplicial data, Eqivariance of
SCCNNs

Permutation symmetry of SCs. There exists a permutation group Pnk
for each set Sk in

a SC of orderK . ForK = 0, this gives the graph permutation group. We can combine these
groups for different simplex orders by a group product to form a larger permutation group
P = ×kPnk

, which is a symmetry group of SCs and simplicial data, assuming vertices
in each simplex are consistently ordered. That is, we have, for p = (p0,p1, . . . ,pK) ∈
P , [p ·Lk]ij = [Lk]

p−1
k

(i)p−1
k

(j), [p ·Bk]ij = [Bk]
p−1

k−1(i)p−1
k

(j), and [p ·xk]i = [xk]
p−1

k
(i).

This permutation symmetry of SCs gives us the freedom to list simplices in any order.

Orientation symmetry of simplicial data. The orientation of a simplex is an equiva-
lence class that two orientations are equivalent if they differ by an even permutation Lim
[2020]; Munkres [2018]. Thus, for a simplex sk

i = {i0, . . . , ik} with k > 0, we have an orien-
tation symmetry group Ok,i = {o+

k,i,o
−
k,i} by a group homomorphism which maps all the

even permutations of {i0, . . . , ik} to the identity element o+
k,i and all the odd permutations

to the reverse operation o−
k,i.

We can further combine the orientation groups of all simplices in a SC as O =×i,kOk,i by
using a group product. This however is not a symmetry group of an oriented SC because
o−

k,i ·Lk changes the signs of Lk elements in ith column and row, and o−
k,i ·Bk changes

the ith row, resulting in a different SC topology. Instead, it is a symmetry group of the
data space, due to its alternating nature w.r.t. simplices. For o ∈ O we have [o ·xk]i =
ok,i ·fk(sk

i ) = fk(o−1
k,i ·s

k
i ), i.e., [xk]i remains unchanged w.r.t. the changed orientation of

sk
i . This gives us the freedom to choose reference orientations of simplices when working

with simplicial data.
Theorem 3.3 (Permutation Equivariance). A SCCNN in (3.1) is P -equivariant. For all p∈P ,
we have p ·SCCNNk : {pk−1 ·xk−1,pk ·xk,pk+1 ·xk+1}→ pkxk .
Theorem 3.4 (Orientation Equivariance). A SCCNN in (3.1) is O-equivariant if σ(·) is odd.
For all o ∈O, we have o ·SCCNNk : {ok−1 ·xk−1,ok ·xk,ok+1 ·xk+1}→ ok ·xk .

Proof. (informal) Both the permutation group and orientation group have linear matrix
representations. By following the same procedure in [Bodnar et al., 2021b, Appendix D] or
Roddenberry et al. [2021], we can prove the equivariance. □

3.2.3 A simplicial Dirichlet energy perspective
Here we analyze the convolution architecture in (3.1) from an energy minimization per-
spective. First, we extend the notion of Dirichlet energy from graphs to SCs.
Definition 3.5. The Dirichlet energy of a k-simplicial signal xk is

D(xk) =Dd(xk)+Du(xk) := ∥Bkxk∥22 +∥B⊤
k+1xk∥22. (3.5)
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This Dirichlet energy returns the graph Dirichlet energy when k= 0. In this case,D(x0) =
∥B⊤

1 x0∥22 =
∑

i

∑
j∥x0,i−x0,j∥2 is the ℓ2-norm of the gradient of the node signal x0.

For edge flow x1, D(x1) consists of two parts, ∥B1x1∥22 and ∥B⊤
2 x1∥22, which measure

the total divergence and curl of x1, respectively, i.e., the edge flow variations w.r.t. nodes
and triangles. In the general case, Dd(xk) and Du(xk) measure the lower and upper
k-simplicial signal variations w.r.t. the faces and cofaces, respectively. A harmonic k-
simplicial signal xk has zero Dirichlet energy, e.g., a constant node signal and a div- and
curl-free edge flow.

Simplicial shifting as Hodge Laplacian smoothing. Bunch et al. [2020]; Yang et al.
[2022c] considered Hk to be a weighted variant of I−Lk , generalizing the graph con-
volutional network (GCN) [Kipf & Welling, 2017]. This is necessarily a Hodge Laplacian
smoothing as in Schaub et al. [2021]—given an initial signal x0

k , we consider the Dirichlet
energy minimization:

min
xk

∥Bkxk∥22 +γ∥B⊤
k+1xk∥22, γ > 0,

gradient descent: xl+1
k,gd = (I−ηLk,d−ηγLk,u)xl

k

(3.6)

with step size η > 0. The simplicial shifting xl+1
k = w0(I−Lk)xl

k is a gradient descent
step with η = γ = 1 and weighted by w0. A minimizer of (3.6) with γ = 1 is in fact in the
harmonic space ker(Lk). Thus, a neural network composed of simplicial shifting layers
may generate an output with an exponentially decreasing Dirichlet energy as it deepens,
formulated by the following proposition. We refer to this as simplicial oversmoothing, a
notion that generalizes the oversmoothing of a GCN and its variants [Cai & Wang, 2020;
Nt & Maehara, 2019; Rusch et al., 2023].
Proposition 3.6. If w2

0∥I−Lk∥22 < 1, D(xl+1
k ) in a neural network of simplicial shifting

layers exponentially converges to zero.

However, when uncoupling the lower and upper parts of Lk in this shifting, associated
to the case γ , 1, the decrease of D(xk) can slow down or cease because the objective
function in (3.6) instead looks for a solution primarily in either ker(Bk) (for γ ≪ 1) or
ker(B⊤

k+1) (for γ≫ 1), not necessarily in ker(Lk), as we shall corroborate in Section 3.5.

Inter-simplicial couplings as sources. Given some nontrivial xk−1 and xk+1, we
consider the optimization

min
xk

∥Bkxk−xk−1∥22 +∥B⊤
k+1xk−xk+1∥22,

gradient descent: xl+1
k,gd = (I−ηLk)xl

k +η(xk,d +xk,u)
(3.7)

with step size η > 0. It resembles the convolutional layer, xl+1
k =w0(I−Lk)xl

k +w1xk,d +
w2xk,u with some learnable weights, in Bunch et al. [2020]; Yang et al. [2022c].
Proposition 3.7. We have

∥xk−1∥22 +∥xk+1∥22 ≤D(xl+1
k )≤ w2

0∥I−Lk∥22D(xl
k)

+w2
1λmax(Lk,d)∥xk,d∥22 +w2

2λmax(Lk,u)∥xk,u∥22.
(3.8)
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The signal projections from the lower and upper simplices act as energy sources for xl
k ,

and also the objective function in (3.7) looks for an xk in the image spaces of Bk+1 and
B⊤

k , instead of ker(Lk). This ensues that D(xl+1
k ) may not converge to zero, but rather

to a nontrivial value ∥xk−1∥22 +∥xk+1∥22. Thus, inter-simplicial couplings pay a role in
mitigating the oversmoothing.

Here we showed that simply generalzing GCNs to simplices will inherit its oversmoothing
risks. However, by uncoupling the lower and upper Laplacians and accounting for the
inter-simplicial couplings we could mitigate this issue. This can also be explained by means
of a diffusion process on SCs [Ziegler et al., 2022], which we discuss in Appendix 3.A.3.

3.3 From Convolutional to Hodge-Aware
In this section, we first introduce the Hodge-invariant operator, which is an operator such
that the three Hodge subspaces are invariant under it. Then, we show that the SCF is
such an operator and SCCNN, guided by the three principles (P1-P3), performs Hodge-
invariant learning, allowing for rational and effective learning on SCs while remaining
expressive. Throughout the exposition, we rely on the simplicial spectral theory developed
in Section 2.4, which also allows us to characterize the expressive power of SCCNNs. We
refer to the detailed derivations and proofs in Appendix 3.D.
Definition 3.8 (Invariant subspace). Let V be a finite-dimensional vector space over R
with dim(V )≥ 1, and let T : V → V be an operator in V. A subspace U ⊂ V is an invariant
subspace under T if Tu ∈ U for all u ∈ U , i.e., the image of every vector in U under T
remains within U . We denote this as T |U : U → U where T |U is the restriction of T on U .

Given the notion of invariant subspace, we then define the Hodge-invariant operators.
Definition 3.9 (Hodge-invariant operator). Let 2 ∈ {im(B⊤

k ), im(Bk+1),ker(Lk)} be
any Hodge subspace of Rnk . A linear transformation F : Rnk → Rnk is a Hodge-invariant
operator if for all xk ∈2 it holds that F (xk) ∈2. That is, any simplicial signal in a certain
Hodge subspace remains in that subspace under F .
Proposition 3.10. The SCF Hk is a Hodge-invariant operator. That is, for any xk ∈2, we
have Hkxk ∈2, for 2 ∈ {im(B⊤

k ), im(Bk+1),ker(Lk)}. Moreover, the SCF operation can
be implicitly written as

Hkxk = Hk|im(B⊤
k

)xk,G +Hk|ker(Lk)xk,H +Hk|im(Bk+1)xk,C (3.9)

where Hk|im(B⊤
k

) =
∑Td

t=1wk,d,tLt
k,d +(wk,d,0 +wk,u,0)I is the restriction of Hk on the

gradient space im(B⊤
k ), Hk|ker(Lk) = (wk,d,0 +wk,u,0)I is the restriction of Hk on the

harmonic space, andHk|im(Bk+1) =
∑Tu

t=0wk,u,tLt
k,u +(wk,d,0 +wk,u,0)I is the restriction

on the curl space.

Provided with the Hodge-invariance of Hk and the SFT, we can perform a spectral analysis,
which is of interest to further understand the SCCNN since simplicial frequencies reflect
the variation characteristics of simplicial signals.
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3.3.1 Spectral analysis

Consider the SFT x̃k = [x̃⊤
k,H, x̃⊤

k,G, x̃⊤
k,C]⊤ of xk where each component is the intensity

of xk at a certain simplicial frequency. We can understand how an SCCNN convolutional
layer yk = Hk,dxk,d +Hkxk +Hk,uxk,u regulates/learns from the simplicial signals at
different frequencies by performing the SFT

ỹk,H = h̃k,H⊙ x̃k,H
ỹk,G = h̃k,d⊙ x̃k,d + h̃k,G⊙ x̃k,G
ỹk,C = h̃k,C⊙ x̃k,C + h̃k,u⊙ x̃k,u,

(3.10)

with⊙ the elementwise multiplication. The nk-dimensional vector h̃k = diag(U⊤
k HkUk)

= [h̃⊤
k,H h̃⊤

k,G h̃⊤
k,C]⊤ is the frequency response vector of Hk with

h̃k,H = (wk,d,0 +wk,u,0)1, h̃k,G =
∑Td

t=0wk,d,tλ
⊙t
k,G +wk,u,01, and

h̃k,C =
Tu∑

t=0
wk,u,tλ

⊙t
k,C +wk,d,01,

(3.11)

where ·⊙t is the elementwise t-th power of a vector. Likewise,

h̃k,d =
∑Td

t=0w
′
k,d,tλ

⊙t
k,G +w′

k,u,01, and h̃k,u =
∑Tu

t=0w
′
k,u,tλ

⊙t
k,C +w′

k,d,01 (3.12)

are the frequency response vectors of Hk,d and Hk,u. The spectral relation in (3.10) shows
that the gradient SFT x̃k,G is learned by a gradient response h̃k,G, while the curl SFT x̃k,C
is learned by a curl response h̃k,C. The two learnable responses are independent and they
only coincide at the trivial harmonic frequency, as shown by the two individual curves in
Fig. 3.2a. Moreover, the lower and upper projections are independently learned by h̃k,d
and h̃k,u, respectively.

The elementwise nonlinearity induces an information spillage that one type of spectra
could be spread over other types. As illustrated in Fig. 3.2b, the top figure shows the SFT
of an input with only gradient components, and the bottom figure plots the SFT of σ(yk),
showing that it also contains information in harmonic or curl subspaces. This results
from the nonlinearity, since applying a linear SCF leads to an output with only gradient
components. In the following, we characterize the expressive power of SCCNN.
Proposition 3.11. An SCCNN layer with inputs xk,d,xk,xk,u is at most expressive as an
MLP σ(G′

k,dxk,d +Gkxk +G′
k,uxk,u) with Gk = Gk,d +Gk,u where Gk,d and G′

k,d are
analytical matrix functions of Lk,d, while Gk,u and G′

k,u are analytical matrix functions of
Lk,u. This expressivity can be achieved by setting Td = T ′

d = nk,G and Tu = T ′
u = nk,C in

(3.1) with nk,G the number of distinct gradient frequencies and nk,C the number of distinct
curl frequencies.

The proof follows from Cayley-Hamilton theorem [Horn & Johnson, 2012]. This expressive
power can be better understood from the spectral perspective — The gradient SFT x̃k,G can
be learned as expressive as by an analytical vector-valued function g̃k,G, which collects the
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Figure 3.2: (a) (top): Independent gradient and curl learning responses. (bottom): Stability-selectivity tradeoff
of SCFs where h̃G has better stability but smaller selectivity than g̃G. (b) Information spillage of nonlinearity.
(top): the SFT of an input with only gradient components. (bottom): the SFT of the output shows that after
applying a nonlinearity the output also contains information in non-gradient frequencies. (c) The distance
between the perturbed outputs and true when node adjacencies are perturbed. (top): L = 1, triangle output
remains clean. (bottom): L = 2, triangle output is perturbed.

eigenvalues of Gk,d at gradient frequencies. The curl SFT x̃k,C can be learned as expressive
as by another analytical vector-valued function g̃k,C, which collects the eigenvalues ofGk,u
at curl frequencies. These two functions need only to coincide at the harmonic frequency.
In addition, the SFTs of lower and upper projections can be learned as expressive as by
two independent analytical vector-valued functions as well.

3.3.2 Hodge-aware learning
Given the expressive power in Proposition 3.11 and the spectral relation in (3.10), we show
that SCCNN performs a Hodge-aware learning in the following sense, which comes with
advantages over the existing approaches.
Theorem 3.12. An SCCNN is Hodge-aware:

1. The SCF Hk is a Hodge-invariant learning operator. Specifically, three Hodge subspaces
are invariant under Hk ;

2. The lower SCF Hk,d and upper SCF Hk,u are, respectively, gradient- and curl-invariant
learning operators;

3. The learnings in the gradient and curl spaces are independent; and

4. the learnings in the gradient and curl spaces are expressive as in Proposition 3.11.

This theorem shows that an SCCNN performs an expressive and independent learning in
the gradient and curl subspaces from the three inputs while preserving the three subspaces
to be invariant w.r.t its learnable SCFs. This allows for the rational and effective learning
on SCs, as illustrated in Fig. 3.3, from the two aspects. These three-fold properties of an
SCCNN, respectively, come from the convolutional architecture choice, the uncoupling of
the lower and upper adjacencies, and the higher-order convolutions in the SCCNN.
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Figure 3.3: An illustration of the Hodge-aware learning of an SCCNN. We show that how an edge flow x1,
together with the lower and upper projections x1,d and x1,u, are transformed by an SCCNN in the spectral
domain. The implicit operation H1x1 (in the dashed box on the right) reflects the Hodge-aware learning:
1) H1 is Hodge invariant: each component is learned within their own subspace, and H1 does not mix up
the three subspaces; 2) The learning in the gradient and curl subspaces are independent where features at
shared frequencies λG,2 and λC,1 can be separately learned; and 3) The learning operators are expressive
in the sense that the spectral responses are as expressive as any analytical functions in the gradient and curl
frequencies.

On the one hand, Proposition 3.10 shows that the operation of Hk on the simplicial signal
space is equivalent to a summation of its restrictions Hk|2 on three smaller subspaces 2.
This Hodge-invariant nature of the learnable SCFs substantially shrinks the learning space
of an SCCNN and allows for an effective learning. On the other hand, simplicial signals
often present implicit or explicit properties that different Hodge subspaces can capture.
For example, water flows, traffic flows, electrical currents [Grady & Polimeni, 2010; Jia
et al., 2019] follow flow conservation, i.e., being div-free in the gradient space ker(B1),
while exchange rates can be modelled as curl-free edge flows [Jiang et al., 2011]. Owing
to the Hodge-invariance of H1 and its independent learning in the nontrivial subspaces,
an SCCNN can capture such characteristics of real-world edge flows effectively. When
it comes to regression tasks on SCs, an SCCNN can generate outputs respecting these
physicial laws.
Remark 3.13 (Relation to message passing networks). Message-passing simplicial networks
(MPSNs) [Bodnar et al., 2021b] using MLP to aggregate and update are non-Hodge-aware.
Their learning functions pursue direct mappings between the much larger signal space Rnk ,
thus, requiring more training data for accurate learning, as well as a larger computational
complexity. Moreover, MPSN does not preserve the Hodge subspaces, i.e., it is not Hodge-
invariant. Thus, they might generate outputs with small losses (e.g., mean-squared-errors)
in regression tasks, yet not respecting the physical laws being either div- or curl-free
properties such as the above simplicial signals. We shall corroborate this in Appendix 3.F.
Remark 3.14 (Relation to other convolutional methods). While most convolutional networks
on SCs use Hodge-invariant learning operators, they are not strictly Hodge-aware, resulting
in practical limits. For example, Ebli et al. [2020] considered Hk =

∑
iwiLi

k , which
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preserves the Hodge subspaces yet does not uncouple the lower and upper parts of Lk .
This makes it strictly less expressive and non-Hodge-aware. Consider two frequencies
λG = λC which share a common value but correspond to the gradient and curl subspaces,
respectively. The simplicial signal components at these two frequencies are always learned
in the same fashion, which induces contradicting issues when the underlying component in
one subspace should be diminished while the one in the other subspace should be preserved.
This underlines the importance of uncoupling the two adjacencies because the lower and
upper Laplacians operate in different subspaces. Roddenberry et al. [2021] applied Hk

with Td = Tu = 1. Spatially, this limits the receptive field of each simplex to its direct
neighbors. Spectrally, it leads to a linear learning frequency response. A similar treatment
was considered in Bunch et al. [2020]; Yang et al. [2022c] which simply generalized the
GCN without uncoupling the two adjacencies, and gave a limited low-pass linear spectral
response, as shown in Fig. 3.2a and discussed in Section 3.2.3.

3.4 Stability Analysis
In this section, we investigate the stability of SCCNNs to domain perturbations on SCs,
because in practice we often perform convolutional learning on weighted SCs to capture
the strengths of simplicial adjacencies and incidences which may suffer perturbations.

3.4.1 SCCNN on weighted SCs
A weighted SC can be defined through specifying the weights of simplices. We give the
definition of a commonly used weighted SC with weighted Hodge Laplacians in Grady &
Polimeni [2010]; Horak & Jost [2013].
Definition 3.15 (Weighted SC and Hodge Laplacians). In an oriented and weighted SC, we
have diagonal weighting matrices Mk with [M]ii measuring the weight of ith k-simplex.
A weighted kth Hodge Laplacian is given by

Lk = Lk,d +Lk,u = MkB⊤
k M−1

k−1Bk +Bk+1Mk+1B⊤
k+1M−1

k . (3.13)

where Lk,d and Lk,u are the weighted lower and upper Laplacians. A symmetric version
follows Ls

k = M−1/2
k LkM1/2

k , and likewise, we have Ls
k,d = M1/2

k B⊤
k M−1

k−1BkM1/2
k

and Ls
k,u = M−1/2

k Bk+1Mk+1B⊤
k+1M−1/2

k , with the weighted incidence matrix
M−1/2

k−1 BkM1/2
k [Guglielmi et al., 2023; Horak & Jost, 2013; Schaub et al., 2020].

SCCNNs in weighted SC. The SCCNN layer defined in a weighted SC is of form

xl
k = σ(Hl

k,dRk,dxl−1
k−1 +Hl

kxl−1
k +Hl

k,uRk,uxl−1
k+1) (3.14)

where the three SCFs are defined based on the weighted Laplacians (3.13), and the lower and
upper contributions xl

k,d and xl
k,u are obtained via projection matrices Rk,d ∈ Rnk×nk−1

and Rk,u ∈ Rnk×nk+1 , instead of B⊤
k and Bk+1. For example, Bunch et al. [2020] consid-

ered R1,d = M1B⊤
1 M−1

0 and R1,u = B2M2.
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3.4.2 Stability of SCCNNs to Domain Perturbations
To highlight the need for a stability analysis, note that, on the one hand, we may lack the
true underlying topologies in SCs as they are often estimated from noisy data; and we may
undergo adversarial attacks on the topologies. On the other hand, we want to characterize
the stability-selectivity tradeoff of SCCNN, in analogy to the study for CNNs [Bietti &
Mairal, 2017; Bruna & Mallat, 2013; Qiu et al., 2018] and GNNs [Gama et al., 2019b; 2020a;
Kenlay et al., 2021; Parada-Mayorga et al., 2022].

This motivates us to investigate that how far are the outputs of an SCCNN before and after
perturbations are applied to SCs? We consider the following relative perturbation model,
generalizing the graph perturbation model in Gama et al. [2019b]
Definition 3.16 (Relative perturbation). Consider some perturbation matrix of an ap-
propriate dimension. For the weighted Hodge Laplacian Lk,d, its relative perturbed ver-
sion is L̂k,d = Lk,d +Ek,dLk,d +Lk,dEk,d with perturbation Ek,d; likewise for L̂k,u by
Ek,u. For the weighted incidence matrix Rk,d, its relative perturbed version is R̂k,d =
Rk,d +Jk,dRk,d with perturbation Jk,d; likewise for R̂k,u by Jk,u.

This models the perturbations on the strengths of adjacent and incident relations, e.g., a
large weight is misused when two edges are weakly or not adjacent, or data on a node
is projected on an edge which is yet not incident to it. Moreover, this quantifies the
relative perturbations with respect to the local simplicial topology in the sense that weaker
connections in an SC are deviated by perturbations proportionally less than stronger
connections. We further define the integral Lipschitz property of spectral filters to measure
the variability of spectral response functions of Hk .
Definition 3.17 (Intergral Lipschitz SCF). An SCF Hk is integral Lipschitz with constants
ck,d, ck,u ≥ 0 if the derivatives of its spectral response functions h̃k,G(λ) and h̃k,C(λ)
follow that |λh̃′

k,G(λ)| ≤ ck,d and |λh̃′
k,C(λ)| ≤ ck,u.

This property provides a stability-selectivity tradeoff of SCFs independently in the gradient
and curl frequencies. A spectral response can have both a good selectivity and stability
in small frequencies (a large |h̃′

k,·| for λ→ 0), while it tends to be flat for having better
stability at the cost of selectivity (a small variability for large λ) in large frequencies, as
shown in Fig. 3.2a. As of the polynomial nature of responses, all SCFs of SCCNN are
integral Lipschitz. We also denote the integral Lipschitz constant for the lower SCFs Hk,d
by ck,d and for the upper SCFs Hk,u by ck,u without loss of generality.

Under the following assumptions, we now characterize the stability bound of SCCNN.
Assumption 3.18. The perturbations are small such that ∥Ek,d∥2≤ ϵk,d,∥Jk,d∥2≤ εk,d
and ∥Ek,u∥2≤ ϵk,u,∥Jk,u∥2≤ εk,u, where ∥A∥2 = max|x|1=1∥Ax∥2 is the operator norm
(spectral radius) of a matrix A.

Assumption 3.19. The SCFs Hk of an SCCNN have a normalized bounded frequency
response (for simplicity), likewise for Hk,d and Hk,u.

Assumption 3.20. The lower and upper projections are finite such that ∥Rk,d∥2 ≤ rk,d and
∥Rk,u∥2 ≤ rk,u.
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Assumption 3.21. The nonlinearity σ(·), e.g., ReLu,tanh,sigmoid, is cσ-Lipschitz with
cσ ≥ 0.
Assumption 3.22. The initial inputs x0

k , for all k, are finite, such that ∥x0
k∥2 ≤ [β]k . We

collect them in β = [β0, . . . ,βK ]⊤.

Theorem 3.23. Let xL
k be the k-simplicial signal output of an L-layer SCCNN on a weighted

SC. Let x̂L
k be the output of the same SCCNN but on a relatively perturbed SC. Define δk,d =

(∥Vk,d−Uk∥+ 1)2− 1 and δk,u = (∥Vk,u−Uk∥+ 1)2− 1, with Vk,d and Vk,u the
eigenvectors of Ek,d and Ek,u, which measure the eigenvector misalignments between the
perturbations and Laplacians. Under Assumptions 3.18 to 3.22, the Euclidean distance between
the two outputs is finite and upper-bounded

∥x̂L
k −xL

k ∥2 ≤ [d]k with d = cL
σ

L∑
l=1

Ẑl−1TZL−lβ, (3.15)

where forK = 2,

T =

 t0 t0,u
t1,d t1 t1,u

t2,d t2

 ,Z =

 1 r0,u
r1,d 1 r1,u

r2,d 1

 , Ẑ =

 1 r̂0,u
r̂1,d 1 r̂1,u

r̂2,d 1

 , (3.16)

with r̂k,d = rk,d(1 + εk,d) and r̂k,u = rk,u(1 + εk,u). Notice that T,Z and Ẑ are tridi-
agonal and follow a similar structure for a general K . The diagonal entries of T are
tk = ck,d∆k,dϵk,d + ck,u∆k,uϵk,u. The off-diagonal entries are tk,d = rk,dεk,d
+ck,d∆k,dϵk,drk,d and tk,u = rk,uεk,u +ck,u∆k,uϵk,urk,u, where∆k,d = 2(1+δk,d)√nk

and ∆k,u = 2(1+ δk,u)√nk .

We refer to Appendix 3.E.1 for a two-step proof. This result bounds the outputs of an
SCCNN on all simplicial levels, showing that they are stable to small perturbations on the
simplicial adjacencies and incidences. Specifically, we make two observations from the
complicated expression. First, the stability bound depends on i) the degree of perturbations
including their magnitudes ϵk,· and εk,·, and the eigenspace misalignment ∆k,·; ii) the
integral Lipschitz properties ck,· of SCFs; and, iii) the degree of projections rk,·. Second,
the stability of the k-output depends on the factors related to not only k-simplices, but also
simplices of adjacent orders due to inter-simplicial couplings. For example, when L= 1,
the node output bound d0 is affected by factors in the node space, as well as the edge space
factored by the projection degree. As the layer deepens, this mutual dependence expands
further. When L= 2, the factors in the triangle space also affect the stability of the node
output d0, as we observe in Fig. 3.2c.

More importantly, this stability bound provides intuitive practical implications for convolu-
tional learning on SCs. While inter-simplicial couplings may be beneficial, SCCNN becomes
less stable as the number of layers increases due to the mutual dependence between outputs
on different simplicial levels. Thus, to maintain the expressive power, we expect to use
higher-order SCFs in exchange for shallow layers. This yet does not harm the stability in
the following two aspects:
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• First, high-frequency components can be spread over the low frequencies due to
the information spillage of nonlinearity [cf. Fig. 3.2b] where the spectral responses
are more selective and have better stability. If the signal has large high gradient
frequency components, we need the SCCNN to be selective in high gradient frequen-
cies. However, to guarantee the stability, the frequency response should be smooth
(less selective) in these frequencies, as illustrated by h̃G in Fig. 3.2a (bottom). This
selectivity-stability tradeoff can be mitigated by the nonlinearity — the information
in high gradient frequencies could spill over in lower frequencies, where the spectral
responses are more selective and have better discriminating ability.

• Second, higher-order SCFs are easier to be learned with smaller integral Lipschitz
constants than lower-order ones due to the increased degree of freedom, thus, leading
to an increased stability. This can be easily seen by comparing one-order and two-
order cases. We experimentally investigate this in Section 3.5.4. Moreover, we
introduce the following regularizer to the loss function during training so to promote
the integral Lipschitz property.

rIL = ∥λk,Gh̃
′
k,G(λk,G)∥+∥λk,Ch̃

′
k,C(λk,C)∥

=

∥∥∥∥∥
Td∑

t=0
twk,d,tλ

t
k,G

∥∥∥∥∥+

∥∥∥∥∥
Tu∑

t=0
twk,u,tλ

t
k,C

∥∥∥∥∥ (3.17)

for λk,G ∈ {λk,G,i}
nk,G
i=1 and λk,C ∈ {λk,C,i}

nk,C
i=1 , which are the gradient and curl

frequencies. To avoid computing the eigendecomposition of the Hodge Laplacian,
we can approximate the true frequencies by sampling certain number of points in
the frequency band (0,λk,G,m] and (0,λk,C,m] where the maximal gradient and curl
frequencies can be computed by efficient algorithms, e.g., power iteration.

3.5 Experiments
The goal of this section is to answer the following four research questions with experiments
on various simplicial-level regression and classification tasks:

RQ 1 What are the effects of the three principles of SCCNN, i.e., uncoupling the lower
and upper parts of Hodge Laplacians (P1), the inter-simplicial couplings (P2), and
higher-order convolutions (P3)?

RQ 2 How do the uncoupling of the lower and upper parts of Hodge Laplacians and the
inter-simplicial couplings affect the simplicial oversmoothing?

RQ 3 How does the Hodge-aware property of SCCNN play a role in different tasks on SCs,
compared to non-Hodge-aware methods?

RQ 4 How do different factors affect the stability of SCCNN, and how can we maintain
the stability while keeping the expressive power?

For comparison, we consider the following learning methods on single-level simplices:
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Table 3.1: Forex results (nmse|total arbitrage,↓).

Methods Random Noise Curl Noise Interpolation
Input 0.119±0.004|29.19±0.874 0.552±0.027|122.4±5.90 0.717±.030|106.4±0.902
Baseline (ℓ2 regularization) 0.036±0.005|2.29±0.079 0.050±0.002|11.12±0.537 0.534±0.043|9.67±0.082
SNN 0.110±0.005|23.24±1.03 0.446±0.017|86.95±2.20 0.702±0.033|104.74±1.04
PSNN 0.008±0.001|0.984±0.170 0.000±0.000|0.000±0.000 0.009±0.001|1.13±0.329
MPSN 0.039±0.004|7.74±0.88 0.076±0.012|14.92±2.49 0.117±0.063|23.15±11.7

SCCNN, id 0.027±0.005|0.000±0.000 0.000±0.000|0.000±0.000 0.265±0.036|0.000±0.000
SCCNN, tanh 0.002±0.000|0.325±0.082 0.000±0.000|0.003±0.003 0.003±0.002|0.279±0.151

• simplicial neural network (SNN) [Ebli et al., 2020], which does not respect P1 and P2
and is non-Hodge-aware;

• principled simplicial neural network (PSNN) [Roddenberry et al., 2021], which does
not respect P2 and P3 and is non-Hodge-aware;

• simplicial convolutional neural networks (SCNN)1 [Yang et al., 2022a], which does
not respect P2 but is Hodge-aware;

and the following learning methods on simplicial complexes:

• Bunch [Bunch et al., 2020], which does not respect P1 and P2 and is non-Hodge-
aware;

• MPSN [Bodnar et al., 2021b], which is based on message-passing and not Hodge-
aware.

We also considered the MLP and standard GNN [Defferrard et al., 2016] as baselines to
highlight the effect of SC topology on simplicial-level tasks. We refer to Appendix 3.B for
the detailed comparisons between these methods and SCCNN, as well as to Appendix 3.F
for the full experimental details.

3.5.1 Foreign currency exchange (RQs 1, 3)
In forex problems, to build a fair market, the arbitray-free condition implies that for any
currencies i, j,k, it follows that ri/jrj/k = ri/k where ri/j is the exchange rate between
i and j. That is, the exchange path i→ j → k provides no profit or loss over a direct
exchange i→ k. Following Jiang et al. [2011], we model exchange rates as edge flows in
an SC of order two, specifically, via [x1][i,j] = log(ri/j). This conveniently translates the
arbitrage-free condition into x1 being curl-free, i.e., [x1][i,j] +[x1][j,k]− [x1][i,k] = 0 in any
triangle [i, j,k]. We consider a real-world forex market at three timestamps, which contains
certain degree of arbitrage [Jia et al., 2019; Yang et al., 2024]. We focus on recovering a fair
market in two scenarios, first, from noisy exchange rates where random noise and noise
only in the curl space modelling random arbitrage (“curl noise”) are added, and second,
when only 50% of the total rates are observed. To evaluate the performance, we measure
1Note that the difference between SCCNN and SCNN lies in that the latter does not include the inter-layer
projections, as detailed in Appendix 3.B thus, we refer to our method, simplicial complex CNN.



3.5 Experiments

3

65

Table 3.2: Simplex prediction (AUC, ↑) .

Methods 2-simplex 3-simplex
Mean 62.8±2.7 63.6±1.6
MLP 68.5±1.6 69.0±2.2
GNN 93.9±1.0 96.6±0.5
SNN 92.0±1.8 95.1±1.2
PSNN 95.6±1.3 98.1±0.5
SCNN 96.5±1.5 98.3±0.4
Bunch 98.3±0.5 98.5±0.5
MPSN 98.1±0.5 99.2±0.3
SCCNN 98.7±0.5 99.4±0.3

Table 3.3: Ablation study on SCCNN and the hyperparame-
ters for the best results.

Missing component 2-simplex Hyper Params.
— 98.7±0.5 L= 2,T = 2
Edge-to-Node 93.9±1.0 L= 5,T = 2
Node-to-Node 98.7±0.4 L= 4,T = 2
Edge-to-Edge 98.5±1.0 L= 3,T = 2
Node-to-Edge 98.8±0.3 L= 4,T = 2
Node input 98.2±0.5 L= 2,T = 4
Edge input 98.1±0.4 L= 2,T = 3

the normalized mean squared error (nmse) and total arbitrage (total curl), both equally
important for achieving a fair market.

From Table 3.1, we make the following observations on the impacts of P1 and P3, as well
as the Hodge-awareness.

1) MPSN performs poorly at this task: although it reduces the nmse, it outputs unfair
rates with large arbitrage, against the forex principle, because it is not Hodge-aware
and unable to capture the arbitrage-free property with small amount of data (cf.
Remark 3.13).

2) SNN performs poorly as well: as discussed in Remark 3.14, it restricts the gradient
and curl spaces to be always learned in the same fashion and makes it impossible to
perform disjoint learning in two subspaces. However, since there are eigenvalues
which share a common value but live in different subspaces in this SC, it requires
preserving the gradient component while removing the curl one here.

3) PSNN can reconstruct relatively fair forex rates with small nmse. The reconstruction
from curl noise is perfect, while in the other two cases, the nmse and arbitrage are
three times larger than the proposed SCCNN due to the limited expressivity of linear
learning responses.

4) SCCNN performs the best in both reducing the total error and the total arbitrage,
ultimately, corroborating the impact of performing Hodge-aware learning.

We notice that with an identity activation function (σ = id), the arbitrage-free rule is fully
learned by an SCCNN. However, it has relatively large errors in the random noise and
interpolation cases due to its limited linear expressive power. With a nonlinearity σ= tanh,
an SCCNN can tackle these more challenging cases, finding a good compromise between
overall errors and data characteristics.

3.5.2 Simplicial oversmoothing analysis (RQ 2)
We use simplicial shifting layers (i.e., (3.6) composed with σ = tanh) to illustrate the
evolution of Dirichlet energies of the outputs on nodes, edges and triangles in an SC of
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order two with respect to the number of layers. The corresponding inputs are randomly
sampled from a uniform distribution U([−5,5]). Table 3.4 (the dashed lines) shows that
simply generalizing the GCN on SCs as in Bunch method could lead to oversmoothing on
simplices of all orders. This aligns with our theoretical results in Section 3.2.3. However,
uncoupling the lower and upper parts ofL1 (e.g., by setting γ = 2 in (3.6)) could mitigate the
oversmoothing on edges, as shown by the dotted line. Lastly, when we account for the inter-
simplicial coupling, as shown by the solid lines (where we applied (3.7)), it could almost
prevent the oversmoothing, since it provides energy sources. We refer to Appendix 3.F.1
for other results.

3.5.3 Simplex prediction (RQs 1, 3-4)
We consider the prediction task of 2- and 3-simplices which extends the link (1-simplex)
prediction in graphs. Our approach is to first learn the representations of lower-order
simplices and then use an MLP with their concatenation as inputs to identify if a simplex
is closed or open, which generalizes the link prediction method of Zhang & Chen [2018].
Considering a coauthorship dataset [Ammar et al., 2018], we built an SC following Ebli
et al. [2020] where nodes represent authors and (k− 1)-simplices thus represent the
collaborations of k-authors. The input simplicial signals are the numbers of citations,
e.g., x1 and x2 are those of dyadic and triadic collaborations. Thus, 2-simplex (3-simplex)
prediction amounts to predicting triadic (tetradic) collaborations. We evaluate the AUC
(area under the curve) performance.

From Table 3.2, we make three observations on the effect of the three key principles. 1)
SCCNN, MPSN and Bunch methods outperform the ones without inter-simplicial couplings.
This highlights that accounting for contributions from faces and cofaces increases the
representation power of the network. 2) SCNN performs better than an SNN, which shows
that uncoupling the lower and upper parts in Lk improves the representation learning. 3)
SCCNN performs better than Bunch (similarly, SCNN better than PSNN), showing that
higher-order convolution further improves predictions. 4) While MPSN performs similar
to SCCNN, it has three times more parameters than an SCCNN (Appendix 3.F.3) under the
settings of the best results.

Ablation study. We then perform an ablation study to investigate the roles of different
components in an SCCNN. As reported in Table 3.3, we remove certain simplicial relations in
the SCCNN and evaluate the prediction performance. Without the edge-to-node incidence,
when inputting the node features to the MLP predictor, it is equivalent to a GNN, which has
a poor performance. When removing other adjacencies or incidences, the best performance
remains similar but with an increased model complexity (more layers required). This
however is not preferred, because the stability decreases as the architecture deepens and
the model gets influenced by factors in other simplicial spaces, as discussed in Section 3.4
and shown in Fig. 3.2c. We also consider the case with limited input where the input on
nodes or on edges is missing. The best performance of an SCCNN only slightly drops with
an increase of the convolution order.
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Stability analysis (RQ 4)

Stability bounds. To investigate the stability bound in (3.15), we add perturbations to
relatively shift the eigenvalues of the Hodge Laplacians and the singular values of the
projection matrices by ϵ ∈ [0,1] (cf. Assumption 3.18). We compare the bound in (3.15)
to the experimental ℓ2 distance on each simplex level. As shown in Fig. 3.4 where the
dashed lines are the theoretical stability bounds whereas the solid ones are the experimental
stability bounds, we see the bounds become tighter as perturbation increases.

Stability dependence across simplices. For 2-simplex prediction ofK = 2, we measure
the distance between the simplicial outputs of SCCNN with and without perturbations on
nodes, edges, and triangles, i.e., ∥xL

k − x̂L
k ∥/∥xL

k ∥, for k= 0,1,2. Fig. 3.6 shows that overall
the stabilities of different simplicial outputs are dependent on each other. Specifically, we
see that the triangle output is not influenced by the perturbation on node weights until
L= 2; likewise, the node output is not influenced by the perturbations on triangle weights
when L= 1. Also, perturbations on the edge weights will perturbe the outputs on nodes,
edges, triangles when L= 1. This corroborates our discussions in Section 3.4.

Effect of number of simplices We observe that the same degree of perturbations added
to different simplices causes different degrees of instability, owing to the number nk of
k-simplices in (3.15). Since n0 < n1 < n2, the perturbations on node weights cause less
instability than those on edge and triangle weights.
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Figure 3.6: The relative difference of SCCNN outputs on simplices of different orders when perturbations are
applied to only nodes, edges and triangles and the number of layers varies.

Effect of number of layers. As the number of layers increases, Fig. 3.6 also shows that the
stability of SCCNN degrades, which corresponds to our analysis of using shallow layers.
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Table 3.5: Trajectory prediction (accuracy, ↑).

Methods Synthetic trajectories Ocean drifters
SNN 65.5±2.4 52.5±6.0
PSNN 63.1±3.1 49.0±8.0
SCNN 67.7±1.7 53.0±7.8
Bunch 62.3±4.0 46.0±6.2
SCCNN 65.2±4.1 54.5±7.9

3.5.4 Trajectory prediction (RQ 1, 4)
We consider the task of predicting trajectories in a synthetic SC and ocean drifters from
Schaub et al. [2020], following Roddenberry et al. [2021]. From Table 3.5, we first observe
that the SCCNN and Bunch methods do not always perform better than those without
inter-simplicial couplings. This is because zero inputs are applied on nodes and triangles
following Roddenberry et al. [2021], which makes inter-simplicial couplings inconsequen-
tial. Secondly, an SCCNN performs better than Bunch on average, and SCNN better than
PSNN, showing the advantages of higher-order convolutions. Note that the prediction here
aims to find the best candidate from the neighborhood of the end node, which depends on
the node degree. Since the average node degree of the synthetic SC is 5.24 and that in the
ocean drifter data is 4.81, a random guess has around 20% accuracy. The high standard
derivations may result from the limited ocean drifter data size.

Stability analysis (RQ 4)

Differently from Section 3.5.3, we further investigate the stability in terms of the integral
Lipschitz properties and convolutional orders. We consider SCNNs [Yang et al., 2022a] with
orders Td = Tu ∈ {1,3,5} and train them with regularizations on the integral Lipschitz
constants. As shown in Fig. 3.5, the higher-order case has better stability (smaller ℓ2 distance
between the outputs without and with perturbations) and consistent better accuracy,
compared to the lower-order case. This is because the additional flexibility in the higher-
order case allows the filters to have better intergral Lipschitz properties and thus better
stability, while maintaining the accuracy. We refer to Appendix 3.F.4 for a detailed design
of the regularizations, as well as more in-depth experimental analysis.

3.6 Related Works
Our work is mainly related to learning methods on SCs. Roddenberry & Segarra [2019]
first used L1,d to build neural networks on edges in a graph setting without the upper
edge adjacency. Ebli et al. [2020] then generalized convolutional GNNs [Defferrard et al.,
2016; Kipf & Welling, 2017] to simplices by using the Hodge Laplacian. Roddenberry
et al. [2021]; Yang et al. [2022a] instead uncoupled the lower and upper Laplacians to
perform one- and multi-order convolutions, to which Giusti et al. [2022]; Goh et al. [2022];
Lee et al. [2022] added attention schemes. Keros et al. [2022] considered a variant of
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Table 3.6: Comparisons between SCCNN and other architectures on if they respect the three principles.

Methods Scheme P1 P2 P3

MPSN [Bodnar et al., 2021b] message-passing yes yes no, only direct neighborhoods
Eq. (11) of MPSN, or [Bunch et al., 2020] convolutional no yes no, only direct neighborhoods
Eq. (27) of MPSN convolutional yes yes no, only direct neighborhoods
SNN [Ebli et al., 2020] convolutional no no yes
PSNN [Roddenberry et al., 2021] convolutional yes no no, only direct neighborhoods
SCNN [Yang et al., 2022a] convolutional yes no yes
SCCNN convolutional yes yes yes

Roddenberry et al. [2021] to identify topological “holes” and Chen et al. [2022d] combined
shifting on nodes and edges for link prediction. Theseworks learnedwithin a simplicial level
and did not consider the incidence relations (inter-simplicial couplings) in SCs, which was
included by Bunch et al. [2020]; Yang et al. [2022c]. These works considered convolutional-
type methods, which can be subsumed by SCCNNs. Meanwhile, Bodnar et al. [2021b]; Hajij
et al. [2021] generalized the message passing on graphs [Xu et al., 2018a] to SCs, relying
on both adjacencies and incidences. Most of these works focused on extending GNNs to
SCs by varying the information propagation on SCs with limited theoretical insights into
their components. Among them, Roddenberry et al. [2021] discussed the equivariance
of PSNN to permutation and orientation, which SCCNNs admit as well. Bodnar et al.
[2021b] studied the messgae-passing on SCs in terms of WL test of SCs built by completing
cliques in a graph. The more closely related work is [Yang et al., 2022a], which gave only a
spectral formulation based on SCFs but not SCCNNs. We refer to Table 3.6 for a comparion
between these architectures, as well as to Besta et al. [2024]; Papamarkou et al. [2024] for
an overview of the current progress on learning on SCs.

3.7 Discussion and Conclusion
3.7.1 Discussion and Conclusion
In our opinion, the advantage of SCs is not only about them being able tomodel higher-order
network structures, but also support simplicial data, which can be both human-generated
data like coauthorship, and physical data like flow-type data. This is why we approached
the analysis from the perspectives of both simplicial structures and the simplicial data, i.e.,
the Hodge theory and spectral simplicial theory [Barbarossa & Sardellitti, 2020; Govek et al.,
2018; Hodge, 1989; Lim, 2020; Steenbergen, 2013; Yang et al., 2021; 2022a]. We provided
insights into why the three principles (P1-P3) are needed and how they can guide the
effective and rational learning from simplicial data. As we have practically found, SCCNNs
perform well in applications where data exhibits properties characterized by the Hodge
decomposition due to the Hodge-awareness, while non-Hodge-aware learners fail at giving
rational results. In cases where data does not possess such properties, SCCNNs have
better or comparable performance than the ones which violate or do not respect the three
principles.
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Concurrently, there are works on more general cell complexes, e.g., [Bodnar et al., 2021a;
Hajij et al., 2020; 2022; Roddenberry et al., 2022; Sardellitti et al., 2021], where 2-cells inlcude
not only triangles, but also general polygon faces. We focus on SCs because a regular cell
complex can be subdivided into an SC [Grady & Polimeni, 2010; Lundell et al., 1969] to
which the analysis in this chapter applies, or we can generalize our analysis by allowing
B2 to include 2-cells. This is however informal and does not exploit the power of cell
complexes, which relies on cellular sheaves, as studied in [Bodnar et al., 2022; Hansen &
Ghrist, 2019].

We proposed three principles (P1-P3) for convolutional learning on SCs, summarized in
a general architecture, SCCNNs. Our analysis showed this architecture, guided by the
three principles, demonstrates an awareness of the Hodge decomposition and performs
rational, effective and expressive learning from simplicial data. Furthermore, our study
reveals that SCCNNs exhibit stability and robustness against perturbations in the strengths
of simplicial connections. Experimental results validate the benefits of respecting the three
principles and the Hodge-awareness, as well as the stability results. Overall, our work
establishes a solid theoretical fundation for convolutional learning on SCs, highlighting
the importance of the Hodge theorem.
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Appendix

3.A Simplicial 2-Complex CNNs and Details on Prop-
erties

3.A.1 Simplicial locality in details
The construction of SCFs has an intra-simplicial locality. Hkxk , which consists of basic
operations Lk,dxk and Lk,uxk . They are given, on simplex sk

i , by

[Lk,dxk]i =
∑

j∈N k
i,d∪{i}[Lk,d]ij [xk]j , [Lk,uxk]i =

∑
j∈N k

i,u∪{i}[Lk,u]ij [xk]j ,
(3.18)

where sk
i aggregates signals from its lower and upper neighbors, N k

i,d and N k
i,u. We can

compute the t-step shifting recursively as Lt
k,dxk = Lk,d(Lt−1

k,d xk), a one-step shifting
of the (t− 1)-shift result; likewise for Lt

k,uxk . A SCF linearly combines such multi-
step simplicial shiftings based on lower and upper adjacencies. Thus, the output Hkxk

is localized in Td-hop lower and Tu-hop upper k-simplicial neighborhoods [cf. (2.6)].
SCCNNs preserve such intra-simplicial locality as the elementwise nonlinearity does not
alter the information locality, shown in Figs. 3.1b and 3.1c.

A SCCNN takes the data on k- and (k±1)-simplices at layer l−1 to compute xl
k , causing

interactions between k-simplices and their (co)faces when all SCFs are identity. In turn,
xl−1

k−1 contains information on (k−2)-simplices from layer l−2. Likewise for xl−1
k+1, thus,

xl
k also contains information up to (k±2)-simplices if L≥ 2, because Bkσ(Bk+1) , 0.

Accordingly, this inter-simplicial locality extends to the whole SC if L≥K , unlike linear
filters in a SC where the locality happens up to the adjacent simplices [Isufi & Yang, 2022;
Schaub et al., 2021], which limits its expressive power. This locality is further coupled with
the intra-locality through three SCFs such that a node not only interacts with the edges
incident to it and direct triangles including it, but also edges and triangles further hops
away which contribute to the neighboring nodes, as shown in Fig. 3.1d.

3.A.2 Complexity

In a SCCNN layer for computing xl
k , there are 2+Td +Tu filter coefficients for the SCF Hl

k ,
and 1+Td and 1+Tu for Hl

k,d and Hl
k,u, respectively, which gives the parameter complex-

ity of orderO(Td +Tu). This complexity will increase by FlFl−1 fold for the multi-feature
case, and likewise for the computational complexity. Given the inputs {xl−1

k−1,x
l−1
k ,xl−1

k+1},
we discuss the computation complexity of xl

k in (3.1).

First, consider the SCF operation Hl
kxl−1

k . As discussed in the localities, it is a composition
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of Td-step lower and Tu-step upper simplicial shiftings. Each simplicial shifting has a
computational complexity of order O(nkmk) dependent on the number of neighborsmk

where nk is the number of k-simplices. Thus, this operation has a complexity of order
O(nkmk(Td +Tu)).

Second, consider the lower SCF operation Hl
k,dB⊤

k xl−1
k−1. As incidence matrix Bk is sparse,

it hasnk(k+1) nonzero entries as each k-simplex has k+1 faces. This leads to a complexity
of orderO(nkk) for operation B⊤

k xl−1
k−1. Followed by a lower SCF operation, i.e., a Td-step

lower simplicial shifting, thus, a complexity of order O(knk +nkmkTd) is needed.

Third, consider the upper SCF operation Hl
k,uBk+1xl−1

k+1. Likewise, incidence matrix
Bk+1 has nk+1(k+2) nonzero entries. This leads to a complexity of order O(nk+1k) for
the projection operation Bk+1xl−1

k+1. Followed by an upper SCF operation, i.e., a Tu-step
upper simplicial shifting, thus, a complexity of order O(knk+1 +nkmkTu) is needed.

Finally, we have a computational complexity of orderO(k(nk +nk+1)+NkMk(Td +Tu))
in total.
Remark 3.24. The lower SCF operation Hl

k,dB⊤
k xl−1

k−1 can be further reduced if nk−1≪ nk .
Note that we have

Hl
k,dB⊤

k xl−1
k−1 =

Td∑
t=0

w′l
k,d,tLt

k,dB⊤
k xl−1

k−1 = B⊤
k

Td∑
t=0

w′l
k,d,tLt

k−1,uxl−1
k−1, (3.19)

where the second equality comes from that Lk,dB⊤
k = B⊤

k BkB⊤
k = B⊤

k Lk−1,u, and
L2

k,dB⊤
k = (B⊤

k Bk)(B⊤
k Bk)B⊤

k = B⊤
k (BkB⊤

k )(BkB⊤
k ) = B⊤

k Lk−1,u and likewise for
general t. Using the RHS of (3.19) where the simplicial shifting is performed in the (k−1)-
simplicial space, we have a complexity of order O(knk +nk−1mk−1Td). Similarly, we
have

Hl
k,uBk+1xl−1

k+1 =
Tu∑

t=0
w′l

k,u,tLt
k,uBk+1xl−1

k+1 = Bk+1

Tu∑
t=0

w′l
k,u,tLt

k+1,dxl−1
k+1 (3.20)

where the simplicial shifting is performed in the (k+1)-simplicial space. If it follows that
nk+1≪ nk , we have a smaller complexity ofO(knk+1 +nk+1mk+1Tu) by using the RHS
of (3.20).

3.A.3 Diffusion process on SCs
Diffusion process on graphs can be generalized to SCs to characterize the evolution of
simplicial data over the SC, in analogy to data diffusion on nodes Anand et al. [2022]; Grady
& Polimeni [2010]; Ziegler et al. [2022]. Here we provide an informal treatment of how
discretizing diffusion equations on SCs can give resemblances of simplicial shifting layers.
Consider diffusion equation and its Euler discretization with a unit time step

ẋk(t) =−Lkxk(t), Euler step: xk(t+1) = xk(t)−Lkxk(t) = (I−Lk)xk(t) (3.21)

with an initial conditionxk(t) = x0
k . The solution of this diffusion isxk(t) = exp(−Lkt)x0

k .
As the time increases, the simplicial data reaches to a steady state ẋk(t) = 0, which lies in
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the harmonic space ker(Lk). The simplicial shifting layer resembles this Euler step with a
weight and nonlinearity when viewing the time step as layer index. Thus, a NN composed
of simplicial shifting layers can suffer from oversmoothing on SCs, giving outputs with
decreasing Dirichlet energies as the number of layers increases.

Now let us consider the case where the two Laplacians have different coefficients

ẋk(t) =−Lk,dxk(t)−γLk,uxk(t), Euler step: xk(t) = (I−Lk,d−γLk,u)xk(t). (3.22)

The steady state of this diffusion equation follows (Lk,d +γLk,u)xk(t) = 0, where xk(t)
would be in the kernal space of Lk still. However, before reaching this state, when the
time increases, xk(t) would primarily approach to the kernel of B⊤

k+1 if γ≫ 1, in which
the lower part of the Dirichlet energy remains, i.e., the decrease of D(x(t)) slows down.

When accounting for inter-simplicial couplings, consider there are nontrivial xk−1 and
xk+1 and the diffusion equation becomes

ẋk(t) =−Lkxk(t)+B⊤
k xk−1 +Bk+1xk+1, (3.23)

which has source terms B⊤
k xk−1 +Bk+1xk+1. Consider a steady state ẋk = 0. We have

Lkxk(t) = xk,d +xk,u, where xk is not in the kernel space of Lk . The Euler discretization
gives

xk(t+1) = (I−Lk)xk(t)+xk,d +xk,u. (3.24)

The layer in Bunch et al. [2020] xl+1
k = w0(I−Lk)xl

k +w1xk,d +w2xk,u is a weighted
variant of above step when viewing time steps as layers.

3.B Related works
We describe how the SCCNN in (3.4) generalize other NNs on graphs and SCs in Table 3.7.
For simplicity, we use Y and X to denote the output and input, respectively, without the
index l. Note that for GNNs, L0,d is not defined.

Table 3.7: SCCNNs generalize other convolutional architectures on SCs.

Methods Parameters (n.d. denotes “not defined”)

Ebli et al. [2020] wl
k,d,t = wl

k,u,t,H
l
k,d,Hl

k,u n.d.
Roddenberry et al. [2021] Td = Tu = 1,Hl

k,d,Hl
k,u n.d.

Yang et al. [2022a] Hl
k,d,Hl

k,u n.d.
Bunch et al. [2020] Td = Tu = 1,Hl

k,d = Hl
k,u = I

Bodnar et al. [2021b] Td = Tu = 1,Hl
k,d = Hl

k,u = I

Gama et al. [2020a] proposed to build a GNN layer with the form

Y0 = σ

(
Tu∑

t=0
Lt

0X0W0,u,t

)
(3.25)
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where the convolution step is performed via a graph filter [Gama et al., 2019a; 2020b;
Sandryhaila & Moura, 2013; 2014]. This GNN can be easily built as a special SCCNN
without contributions from edges. Furthermore, Defferrard et al. [2016] considered a fast
implementation of this GNN via a Chebyshev polynomial, while Wu et al. [2019] simplified
this by setting W0,t,u as zeros for t < Tu. Kipf & Welling [2017] further simplified this by
setting Tu = 1, namely, GCN.

Yang et al. [2022a] proposed a simplicial convolutional neural network (SCNN) to learn
from k-simplicial signals

Yk = σ

(
Td∑

t=0
Lt

k,dXkWk,d,t +
Tu∑

t=0
Lt

k,uXkWk,u,t

)
(3.26)

where the linear operation is also defined as a simplicial convolution filter in Yang et al.
[2022a]. This is a special SCCNN with a focus on one simplex level without taking into
the lower and upper contributions consideration. The simplicial neural network (SNN) of
Ebli et al. [2020] did not differentiate the lower and the upper convolutions with a form
of Yk = σ(

∑T
t=0 Lt

kXkWk,t), which leads to a joint processing in the gradient and curl
subspaces as analyzed in Section 3.3.

While Roddenberry et al. [2021] proposed an architecture (referred to as PSNN)of a partic-
ular form of (3.26) with Td = Tu = 1, performing only a one-step simplicial shifting (3.18).
Keros et al. [2022] also performs a one-step simplicial shifting but with an inverted Hodge
Laplacian to localize the homology group in an SC. An attention mechanism was added to
both SCNNs and PSNNs by Giusti et al. [2022] and Goh et al. [2022], respectively. Battiloro
et al. [2023] added the attention mechanism to SCCNNs.

To account for the information from adjacent simplices, Bunch et al. [2020] proposed a
simplicial 2-complex CNN (S2CCNN)

Y0 = σ
(
L0X0W0,u,1 +B1X1W′

0,u,0
)

Y1 = σ
(
B⊤

1 X0W1,d,0 +L1X1W1,1 +B2X2W′
1,u,0

)
Y2 = σ

(
B⊤

2 X1W2,d,0 +L2,uX2W2,u,1
) (3.27)

which is limited to SCs of order two. Note that instead of Hodge Laplacians, simplicial
adjacency matrices with self-loops are used in Bunch et al. [2020], which encode equivalent
information as setting all filter orders in SCCNNs as one. It is a particular form of the
SCCNN where the SCF is a one-step simplicial shifting operation without differentiating
the lower and upper shifting, and the lower and upper contributions are simply added,
not convolved or shifted by lower and upper SCFs. That is, Bunch et al. [2020] can be
obtained from (3.1) by setting lower and upper SCFs as identity, Hk,d = Hk,u = I, and
setting wk,d,t = wk,u,t and Td = Tu = 1 for the SCF Hk . The convolution in Yang et al.
[2022c, Eq. 3] is the same as Bunch et al. [2020] though it was performed in a block matrix
fashion.

The combination of graph shifting and edge shifting in Chen et al. [2022d] can be again seen
as a special S2CCNN, where the implementation was performed in a block matrix fashion.
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Bodnar et al. [2021b] proposed a message passing scheme which collects information from
one-hop simplicial neighbors and direct faces and cofaces as Bunch et al. [2020] and Yang
et al. [2022c], but replacing the one-step shifting and projections from (co)faces by some
learnable functions. The same message passing was applied for simplicial representation
learning by Hajij et al. [2021].

Lastly, there are works on signal processing and NNs on cell complexes. For example,
Roddenberry et al. [2022]; Sardellitti et al. [2021] generalized the signal processing tech-
niques from SCs to cell complexes, Bodnar et al. [2021a]; Hajij et al. [2020] performed
message passing on cell complexes as in SCs and Hajij et al. [2022] added the attention
mechanism. Cell complexes are a more general model compared to SCs, where k-cells
compared to k-simplices contain any shapes homeomorphic to a k-dimensional closed balls
in Euclidean space, e.g., a filled polygon is a 2-cell while only triangles are 2-simplices. We
refer to Hansen & Ghrist [2019] for a more formal definition of cell complexes. Despite cell
complexes are more powerful to model real-world higher-order structures, SCCNNs can be
easily generalized to cell complexes by considering any k-cells instead of only k-simplices
in the algebraic representations, and the theoretical analysis in this chapter can be adapted
to cell complexes as well.

3.C Proofs for Section 3.2
3.C.1 Dirichlet energy minimization perspective

Hodge Laplacian smoothing. We can find the gradient of problem (3.6) as ∂D
∂xk

=
B⊤

k Bkxk +γBk+1B⊤
k+1xk, thus, a gradient descent step follows as (3.6) with a step size

η.

Proof of Proposition 3.6. Consider η = 1.

D(xl+1
k ) = w2

0∥Bk(I−Lk,d−γLk,u)xl
k∥22 +w2

0∥B⊤
k+1(I−Lk,d−γLk,u)xl

k∥22
= w2

0∥(I−Lk−1,u)Bkxl
k∥22 +w2

0∥(I−γLk+1,d)B⊤
k+1xl

k∥22
≤ w2

0∥(I−Lk−1,u)∥22∥Bkxl
k∥22 +w2

0∥(I−γLk+1,d)∥22∥B⊤
k+1xl

k∥22

(3.28)

which follows from triangle inequality. By definition, we have ∥I−Lk−1,u∥22 = ∥I−Lk,d∥22
and ∥I−Lk,u∥22 = ∥I−Lk+1,d∥22. Also, we have ∥I−Lk∥22 = max{∥I−Lk,d∥22,∥I−
Lk,u∥22}Thus, we haveD(xl+1

k )≤w2
0∥I−Lk∥22D(xl

k)when γ= 1. Whenw2
0∥I−Lk∥22 <

1, Dirichlet energy D(xl+1
k ) will exponentially decrease as l increases. □

When γ , 1, from (3.28), we have D(xl+1
k ) =Dd(xl+1

k )+Du(xl+1
k ), which follows

Dd(xl+1
k )≤ w2

0∥(I−Lk,d)∥22Dd(xl
k) and Du(xl+1

k )≤ w2
0∥(I−γLk,u)∥22Du(xl

k)
(3.29)

When γ = 1, the oversmoothing condition is ∥I−Lk∥22 = max{∥I−Lk,d∥22,∥I−Lk,u∥22}
< 1

w2
0
. If ∥I−Lk∥22 = ∥I−Lk,d∥22, under the oversmoothing condition, by not restricting
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γ to be 1, w2
0∥(I−γLk,u)∥22 can be larger than 1 depending on the choice, which means

Du(xl
k) does not necessarily decrease, so does not D(xl

k).

Hodge Laplacian smoothing with sources. The gradient of the objective in (3.7) is
given by Lkxl

k−B⊤
k xk−1−Bk+1xk+1, which gives the gradient descent update in (3.7)

with a step size η.

Consider the layer in Bunch et al. [2020] xl+1
k = w0(I−Lk)xl

k +w1xk,d +w2xk,u with
some weights. By triangle inequality, we have D(xl+1

k )≤ w2
0∥I−Lk∥22D(xl

k)
+w2

1λmax(Lk,d)∥xk,d∥22 +w2
2λmax(Lk,u)∥xk,u∥22. If the weight w0 is small enough fol-

lowing the condition in Proposition 3.6, the contribution from the projections, controled by
weights w1 and w2, can compromise the decrease by w0, maintaining the Dirichlet energy.

3.D Proofs for Section 3.3
3.D.1 The SCF is Hodge-invariant in Proposition 3.10
Proof. We first give the following lemma.

Lemma 3.25. Any finite set of eigenfunctions of a linear operator spans an invariant subspace.

Then, the proof follows from Lemma 3.25 and Proposition 2.5. □

3.D.2 A derivation of the spectral freqency response in (3.10)

SFT of xk. First, the SFT of xk is given by x̃k = [x̃⊤
k,H, x̃⊤

k,G, x̃⊤
k,C]⊤ with the harmonic

embedding x̃k,H = U⊤
k,Hxk = U⊤

k,Hxk,H in the zero frequencies, the gradient embedding
x̃k,G = U⊤

k,Gxk = U⊤
k,Gxk,G in the gradient frequencies, and the curl embedding x̃k,C =

U⊤
k,Cxk = U⊤

k,Cxk,C in the curl frequencies.

SFT of Hkxk. By diagonalizing an SCF Hk with Uk , we have

Hkxk = UkH̃kU⊤
k xk = Uk(h̃k⊙ x̃k) (3.30)

where H̃k = diag(h̃k). Here, h̃k = [h̃⊤
k,H, h̃⊤

k,G, h̃⊤
k,C]⊤ is the frequency response, given by

harmonic response : h̃k,H = (wk,d,0 +wk,u,0)1,
gradient response : h̃k,G =

∑Td
t=0wk,d,tλ

⊙t
k,G +wk,u,01,

curl response : h̃k,C =
∑Tu

t=0wk,u,tλ
⊙t
k,C +wk,d,01,

with (·)⊙t the elementwise t-th power of a vector. Thus, we can express h̃k⊙ x̃k as

[(h̃k,H⊙ x̃k,H)⊤,(h̃k,G⊙ x̃k,G)⊤,(h̃k,C⊙ x̃k,C)⊤]⊤. (3.31)

SFT of projections. Second, the lower projection xk,d ∈ im(B⊤
k ) has only a nonzero

gradient embedding x̃k,d = U⊤
k,Gxk,d. Likewise, the upper projection xk,u ∈ im(Bk+1)
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contains only a nonzero curl embedding x̃k,u = U⊤
k,Cxk,u. The lower SCF Hk,d has

h̃k,d =
∑Td

t=0w
′
k,d,tλ

⊙t
k,G as the frequency response that modulates the gradient embedding

of xk,d and the upper SCF Hk,u has h̃k,u =
∑Tu

t=0w
′
k,u,tλ

⊙t
k,C as the frequency response

that modulates the curl embedding of xk,u.

SFT of yk. For the output yk = Hk,dxk,d +Hkxk +Hk,uxk,u, we have
ỹk,H = h̃k,H⊙ x̃k,H,

ỹk,G = h̃k,d⊙ x̃k,d + h̃k,G⊙ x̃k,G,

ỹk,C = h̃k,C⊙ x̃k,C + h̃k,u⊙ x̃k,u.

(3.32)

3.D.3 Expressive power in Proposition 3.11
Proof. From the Cayley-Hamilton theorem Horn & Johnson [2012], we know that an
analytical function f(A) of a matrix A can be expressed as a matrix polynomial of degree
at most its minimal polynomial degree, which equals to the number of distinct eigenvalues
if A is positive semi-definite.

Consider an analytical functionGk,d ofLk,d, defined on the spectrum ofLk,d via analytical
function gk,G(λ) where λ is in the set of zero and the gradient frequencies. Then, Gk,d
can be implemented by a matrix polynomial of Lk,d of order up to nk,G where nk,G is the
number of nonzero eigenvalues of Lk,d, i.e., the number of distinct gradient frequencies.
Likewise, any analytical function Gk,u of Lk,u can be implemented by a matrix polynomial
of Lk,u of order up to nk,C, which is the number of nonzero eigenvalues of Lk,u, i.e., the
number of distinct curl frequencies.

Thus, as of the matrix polynomial definition of SCFs in a SCCNN, the expressive power
of Hk,dxk,d + Hkxk + Hk,uxk,u is at most G′

k,dxk,d + (Gk,d + Gk,u)xk + G′
k,uxk,u,

when the matrix polynomial orders (convolution orders) follow Tk,d = T ′
k,d = nk,G and

Tk,u = T ′
k,u = nk,C. □

3.D.4 Hodge-aware of SCCNN in Theorem 3.12
Proof. Consider a linear mapping T : V → V . An invariant subspace W of T has the
property that all vectors v ∈W are transformed by T into vectors also contained inW ,
i.e., v ∈W =⇒ T (v) ∈W. For an input x ∈ im(B⊤

k ), the output Hkx is in im(B⊤
k ) too,

because of
Hkx =

∑
t

Lt
k,dx +

∑
t

Lt
k,ux =

∑
t

Lt
k,dx ∈ im(B⊤

k ) (3.33)

where the second equality comes from the orthogonality between im(B⊤
k ) and im(Bk+1).

Similarly, we can show that for x ∈ im(Bk+1), the output Hkx ∈ im(Bk+1); for x ∈
ker(Lk), the output Hkx ∈ ker(Lk). This essentially says the three subspaces of the
Hodge decomposition are invariant with respect to the SCF Hk . Likewise, the gradient
space is invariant with respect to the lower SCF Hk,d, which says any lower projection
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remains in the gradient space after passed by Hk,d; and the curl space is invariant with
respect to the upper SCF Hk,u.

Lastly, through the spectral relation in (3.10), the learning operator Hk in the gradient
space is controlled by the learnable weights {wk,d,t}, which is independent of the learnable
weights {wk,u,t}, associated to the learning ofHk in the curl space. Likewise, the lower SCF
learns in the gradient space as well but with another set of learnable weights {w′

k,d,t}, and
the upper SCF learns in the curl space with learnable weights {w′

k,u,t}. From the spectral
expressive power, we see that above four independent learning in the two subspaces can be
as expressive as any analytical functions of the corresponding frequencies (spectrum). This
concludes the independent and expressive learning in the gradient and curl spaces. □

3.E Proofs for Section 3.4
We first give the formulation of SCCNNs on weighted SCs, then we proceed the stability
proof.

3.E.1 Proof of Stability of SCCNNs in Theorem 3.23
For a SCCNN in (3.14) in a weighted SC S , we consider its perturbed version in a perturbed
SC Ŝ at layer l, given by

x̂l
k = σ(Ĥl

k,dR̂k,dx̂l−1
k−1 + Ĥl

kx̂l−1
k + Ĥl

k,uR̂k,ux̂l−1
k+1) (3.34)

which is defined based on perturbed Laplacians with the same set of filter coefficients, and
the perturbed projection operators following relativ perturbation model.

Given the initial input x0
k for k = 0,1, . . . ,K , our goal is to upper bound the Euclidean

distance between the outputs xl
k and x̂l

k for l = 1, . . . ,L,

∥x̂l
k−xl

k∥2 = ∥σ(Ĥl
k,dR̂k,dx̂l−1

k−1−Hl
k,dRk,dxl−1

k−1

+ Ĥl
kx̂l−1

k −Hl
kxl−1

k + Ĥl
k,uR̂k,ux̂l−1

k+1−Hl
k,uRk,uxl−1

k+1)∥2.
(3.35)

We proceed the proof in two steps: first, we analyze the operator norm ∥Ĥl
k −Hl

k∥2
of a SCF Hl

k and its perturbed version Ĥl
k; then we look for the bound of the output

distance for a general L-layer SCCNN. To ease notations, we omit the subscript such that
∥A∥= max∥x∥2=1∥Ax∥2 is the operator norm (spectral radius) of a matrix A, and ∥x∥
is the Euclidean norm of a vector x.

In the first step we omit the indices k and l for simplicity since they hold for general k and
l. We first give a useful lemma.
Lemma 3.26. Given the ith eigenvector ui of L = UΛU⊤, for lower and upper perturbations
Ed and Eu, we have

Edui = qdiui +E1ui, Euui = quiui +E2ui (3.36)
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with eigendecompositions Ed = VdQdV⊤
d and Eu = VuQuV⊤

u where Vd, Vu collect
the eigenvectors and Qd, Qu the eigenvalues. It holds that ∥E1∥≤ ϵdδd and ∥E2∥≤ ϵuδu,
with δd = (∥Vd−U∥+1)2−1 and δu = (∥Vu−U∥+1)2−1 measuring the eigenvector
misalignments.

Proof. We first prove that Edui = qdiui + E1ui. The perturbation matrix on the lower
Laplacian can be written as Ed = E′

d +E1 with E′
d = UQdU⊤ and E1 = (Vd−U)Qd

(Vd−U)⊤ + UQd(Vd−U)⊤ + (Vd−U)QdU⊤. For the ith eigenvector ui, we have
that

Edui = E
′
dui +E1ui = qdiui +E1ui (3.37)

where the second equality follows from E′
dui = qdiui. Since ∥Ed∥≤ ϵd, it follows that

∥Qd∥≤ ϵd. Then, applying the triangle inequality, we have that

∥E1∥≤∥(Vd−U)Qd(Vd−U)⊤∥+∥UQd(Vd−U)⊤∥+∥(Vd−U)QdU∥
≤∥Vd−U∥2∥Qd∥+2∥Vd−U∥∥Qd∥∥U∥≤ ϵd∥Vd−U∥2+2ϵd∥Vd−U∥
=ϵd((∥Vd−U∥+1)2−1) = ϵdδd,

(3.38)
which completes the proof for the lower perturbation matrix. Likewise, we can prove for
Euui. □

Step I: Stability of the SCF

Proof. 1. Low-order approximation of Ĥ−H. Given a SCF H =
∑Td

t=0wd,tLt
d +∑Tu

t=0wu,tLt
u, we denote its perturbed version by Ĥ =

∑Td
t=0wd,tL̂t

d +
∑Tu

t=0wu,tL̂t
u,

where the filter coefficients are the same. The difference betweenH and Ĥ can be expressed
as

Ĥ−H =
Td∑

t=0
wd,t(L̂t

d−Lt
d)+

Tu∑
t=0

wu,t(L̂t
u−Lt

u), (3.39)

in which we can compute the first-order Taylor expansion of L̂t
d as

L̂t
d = (Ld +EdLd +LdEd)t = Lt

d +Dd,t +Cd (3.40)

with Dd,t :=
∑t−1

r=0(Lr
dEdLt−r

d +Lr+1
d EdLt−r−1

d ) parameterized by t and Cd following
∥Cd∥≤

∑t
r=2

(t
r

)
∥EdLd +LdEd∥r∥Ld∥t−r . Likewise, we can expand L̂t

u as

L̂t
u = (Lu +EuLd +Ldu)t = Lt

u +Du,t +Cu (3.41)

with Du,t :=
∑t−1

r=0(Lr
uEuLt−r

u +Lr+1
u EuLt−r−1

u ) parameterized by t and Cu following
∥Cu∥≤

∑t
r=2

(t
r

)
∥EuLu +LuEu∥r∥Lu∥t−r . Then, by substituting (3.40) and (3.41) into

(3.39), we have

Ĥ−H =
Td∑

t=0
wd,tDd,t +

Tu∑
t=0

wu,tDu,t +Fd +Fu (3.42)
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with negligible terms ∥Fd∥= O(∥Ed∥2) and ∥Fu∥= O(∥Eu∥2) because perturbations
are small and the coefficients of higher-order power terms are the derivatives of analytic
functions h̃G(λ) and h̃C(λ), which are bounded [cf. Definition 3.17].

2. Spectrum of (Ĥ−H)x. Consider a simplicial signal x with an SFT x̃ = U⊤x =
[x̃1, . . . , x̃n]⊤, thus, x =

∑n
i=1 x̃iui. Then, we study the effect of the difference of the SCFs

on a simplicial signal from the spectral perspective via

(Ĥ−H)x =
n∑

i=1
x̃i

Td∑
t=0

wd,tDt
d,tui +

n∑
i=1

x̃i

Td∑
t=0

wu,tDt
u,tui +Fdx +Fux (3.43)

where we have

Dt
d,tui =

t−1∑
r=0

(Lr
dEdLt−r

d +Lr+1
d EdLt−r−1

d )ui, and

Dt
u,tui =

t−1∑
r=0

(Lr
uEuLt−r

u +Lr+1
u EuLt−r−1

u )ui.

(3.44)

Since the lower and upper Laplacians admit the eigendecompositions for an eigenvector2
ui

Ldui = λdiui, Luui = λuiui, (3.45)

we can express the terms in (3.43) as

Lr
dEdLt−r

d ui = Lr
dEdλ

t−r
di ui = λt−r

di Lr
d(qdiui +E1ui) = qdiλ

t
diui +λt−r

di Lr
dE1ui,

(3.46)
where the second equality holds from Lemma 3.26. Thus, we have

Lr+1
d EdLt−r−1

d ui = qdiλ
t
diui +λt−r−1

di Lr+1
d E1ui. (3.47)

With the results in (3.46) and (3.47), we can write the first term in (3.43) as

n∑
i=1

x̃i

Td∑
t=0

wd,tDt
d,tui =

n∑
i=1

x̃i

Td∑
t=0

wd,t

t−1∑
r=0

2qdiλ
t
diui︸                                   ︷︷                                   ︸

term 1

+
n∑

i=1
x̃i

Td∑
t=0

wd,t

t−1∑
r=0

(λt−r
di Lr

dE1ui +λt−r−1
di Lr+1

d E1ui)︸                                                                        ︷︷                                                                        ︸
term 2

.

(3.48)

Term 1 can be further expanded as

term 1 = 2
n∑

i=1
x̃iqdi

Td∑
t=0

twd,tλ
t
diui = 2

n∑
i=1

x̃iqdiλdih̃
′
G(λdi)ui (3.49)

2Note that they can be jointly diagonalized.
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where we used the fact that
∑Td

t=0 twd,tλ
t
di = λdih̃

′
G(λdi). Using Ld = UΛdU⊤ we can

write term 2 in (3.48) as

term 2 =
n∑

i=1
x̃iUdiag(gdi)U⊤E1ui (3.50)

where gdi ∈ Rn has the jth entry

[gdi]j =
Td∑

t=0
wd,t

t−1∑
r=0

(
λt−r

di [Λd]rj +λt−r−1
di [Λd]r+1

j

)

=
{

2λdih̃
′
G(λdi) for j = i,

λdi+λdj

λdi−λdj
(h̃G(λdi)− h̃G(λdj)) for j , i.

(3.51)

Now, substituting (3.49) and (3.50) into (3.48), we have
n∑

i=1
x̃i

Td∑
t=0

wd,tDt
d,tui = 2

n∑
i=1

x̃iqdiλdih̃
′
G(λdi)ui +

n∑
i=1

x̃iUdiag(gdi)U⊤E1ui. (3.52)

By following the same steps as in (3.48)-(3.51), we can express also the second term in (3.43)
as

n∑
i=1

x̃i

Td∑
t=0

wu,tDt
u,tui = 2

n∑
i=1

x̃iquiλuih̃
′
C(λui)ui +

n∑
i=1

x̃iUdiag(gui)U⊤E2ui (3.53)

where gui ∈ Rn is defined as

[gui]j =
Td∑

t=0
wu,t

t−1∑
r=0

(
λt−r

ui [Λu]rj +λt−r−1
ui [Λu]r+1

j

)

=
{

2λuih̃
′
C(λui) for j = i,

λui+λuj

λui−λuj
(h̃C(λui)− h̃C(λuj)) for j , i.

(3.54)

3. Bound of ∥(Ĥ−H)x∥. Now we are ready to bound ∥(Ĥ−H)x∥ based on triangle
inequality. First, given the small perturbations ∥Ed∥ ≤ ϵd and ∥Eu∥ ≤ ϵu, we have for the
last two terms in (3.43)

∥Fdx∥ ≤ O(ϵ2d)∥x∥, and ∥Fux∥ ≤ O(ϵ2u)∥x∥. (3.55)

Second, for the first term ∥
∑n

i=1 x̃i
∑Td

t=0wd,tDt
dui∥ in (3.43), we can bound its two terms

in (3.49) and (3.50) as∥∥∥∥ n∑
i=1

x̃i

Td∑
t=0

wd,tDt
d,tui

∥∥∥∥
≤
∥∥∥∥2

n∑
i=1

x̃iqdiλdih̃
′
G(λdi)ui

∥∥∥∥+
∥∥∥∥ n∑

i=1
x̃iUdiag(gdi)U⊤E1ui

∥∥∥∥.
(3.56)
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For the first term on the RHS of (3.56), we can write∥∥∥∥2
n∑

i=1
x̃iqdiλdih̃

′
G(λdi)ui

∥∥∥∥2
≤ 4

n∑
i=1
|x̃i|2|qdi|2|λdih̃

′
G(λdi)|2 ≤ 4ϵ2dc2

d∥x∥2, (3.57)

which results from, first, |qdi| ≤ ϵd = ∥Ed∥ since qdi is an eigenvalue of Ed; second, the
integral Lipschitz property of the SCF |λh̃′

G(λ)| ≤ cd; and lastly, the fact that
∑n

i=1 |x̃i|2 =
∥x̃∥2 = ∥x∥2 and ∥ui∥2 = 1. We then have∥∥∥∥2

n∑
i=1

x̃iqdiλdih̃
′
G(λdi)ui

∥∥∥∥≤ 2ϵdcd∥x∥. (3.58)

For the second term in RHS of (3.56), we have∥∥∥∥ n∑
i=1

x̃iUdiag(gdi)U⊤E1ui

∥∥∥∥≤ n∑
i=1
|x̃i|∥Udiag(gdi)U⊤∥∥E1∥∥ui∥, (3.59)

which stems from the triangle inequality. We further have ∥Udiag(gdi)U⊤∥
= ∥diag(gdi)∥ ≤ 2Cd resulting from ∥U∥= 1 and the cd-integral Lipschitz of h̃G(λ) [cf.
Definition 3.17]. Moreover, it follows that ∥E1∥ ≤ ϵdδd from Lemma 3.26, which results in∥∥∥∥ n∑

i=1
x̃iUdiag(gdi)U⊤E1ui

∥∥∥∥≤ 2Cdϵdδd
√
n∥x∥ (3.60)

where we use that
∑n

i=1 |x̃i|= ∥x̃∥1 ≤
√
n∥x̃∥=

√
n∥x∥. By combining (3.57) and (3.60),

we have ∥∥∥∥ n∑
i=1

x̃i

Td∑
t=0

wd,tDt
d,tui

∥∥∥∥≤ 2ϵdcd∥x∥+2Cdϵdδd
√
n∥x∥. (3.61)

Analogously, we can show that∥∥∥∥ n∑
i=1

x̃i

Td∑
t=0

wu,tDt
u,tui

∥∥∥∥≤ 2ϵucu∥x∥+2Cuϵuδu
√
n∥x∥. (3.62)

Now by combining (3.55), (3.61) and (3.62), we can bound ∥(Ĥ−H)x∥ as

∥(Ĥ−H)x∥ ≤ 2ϵdcd∥x∥+2Cdϵdδd
√
n∥x∥+O(ϵ2d)∥x∥

+2ϵucu∥x∥+2Cuϵuδu
√
n∥x∥+O(ϵ2u)∥x∥.

(3.63)

By defining ∆d = 2(1+ δd
√
n) and ∆u = 2(1+ δu

√
n), we can obtain that

∥Ĥ−H∥ ≤ cd∆dϵd + cu∆uϵu +O(ϵ2d)+O(ϵ2u). (3.64)

Thus, we have ∥Hl
k− Ĥl

k∥ ≤ ck,d∆k,dϵk,d + ck,u∆k,uϵk,u with ∆k,d = 2(1+ δk,d
√
nk)

and ∆k,u = 2(1 + δk,u
√
nk) where we ignore the second and higher order terms on

ϵk,d and ϵk,u. Likewise, we have ∥Hl
k,d− Ĥl

k,d∥ ≤ ck,d∆k,dϵk,d for the lower SCF and
∥Hl

k,u− Ĥl
k,u∥ ≤ ck,u∆k,uϵk,u for the upper SCF. □
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Step II: Stability of SCCNNs

Proof. Given the initial input x0
k , the Euclidean distance between xl

k and x̂l
k at layer l

can be bounded by using triangle inequality and the cσ-Lipschitz property of σ(·) [cf.
Assumption 3.21] as

∥x̂l
k−xl

k∥2 ≤ cσ(ϕl
k,d +ϕl

k +ϕl
k,u), (3.65)

with
ϕl

k,d :=∥Ĥl
k,dR̂k,dx̂l−1

k−1−Hl
k,dRk,dxl−1

k−1∥,

ϕl
k :=∥Ĥl

kx̂l−1
k −Hl

kxl−1
k ∥,

ϕl
k,u :=∥Ĥl

k,uR̂k,ux̂l−1
k+1−Hl

k,uRk,uxl−1
k+1∥.

(3.66)

We now focus on upper bounding each of the terms.

1. Term ϕl
k. By subtracting and adding Ĥl

kxl−1
k within the norm, and using the triangle

inequality, we obtain

ϕl
k ≤ ∥Ĥl

k(x̂l−1
k −xl−1

k )∥+∥(Ĥl
k−Hl

k)xl−1
k ∥ ≤ ∥x̂l−1

k −xl−1
k ∥+∥Ĥl

k−Hl
k∥∥x

l−1
k ∥

≤ ∥x̂l−1
k −xl−1

k ∥+(ck,d∆k,dϵk,d + ck,u∆k,uϵk,u)∥xl−1
k ∥

(3.67)
where we used the SCF stability in (3.64) and that all SCFs have a normalized bounded
frequency response in Assumption 3.19. Note that Ĥl

k is also characterized by h̃G(λ) with
the same set of filter coefficients as Hl

k .

2. Term ϕl
k,d and ϕl

k,u. By subtracting and adding a term Ĥl
k,dR̂k,dxl−1

k−1 within the
norm, we have

ϕl
k,d ≤ ∥Ĥl

k,dR̂k,d(x̂l−1
k−1−xl−1

k−1)∥+∥(Ĥl
k,dR̂k,d−Hl

k,dRk,d)xl−1
k−1∥

≤ ∥R̂k,d∥∥x̂l−1
k−1−xl−1

k−1∥+∥Ĥl
k,dR̂k,d−Hl

k,dRk,d∥∥xl−1
k−1∥,

(3.68)

where we used again triangle inequality and ∥Ĥl
k,d∥ ≤ 1 from Assumption 3.19. For the

term ∥R̂l
k,d∥, we have ∥R̂l

k,d∥≤ ∥Rl
k,d∥+∥Jk,d∥∥Rl

k,d∥≤ rk,d(1+ϵk,d) where we used
∥Rl

k,d∥ ≤ rk,d in Assumption 3.20 and ∥Jl
k,d∥ ≤ ϵk,d. For the second term of RHS in (3.68),

by adding and subtracting Ĥl
k,dRl

k,d we have

∥Ĥl
k,dR̂k,d−Hl

k,dRk,d∥= ∥Ĥl
k,dR̂k,d− Ĥl

k,dRl
k,d + Ĥl

k,dRl
k,d−Hl

k,dRk,d∥

≤ ∥Ĥl
k,d∥∥R̂k,d−Rk,d∥+∥Ĥl

k,d−Hl
k,d∥∥Rk,d∥

≤ rk,dϵk,d +C′
k,d∆k,dϵk,drk,d

(3.69)

where we use the stability result of the lower SCF Hl
k,d in (3.64). By substituting (3.69)

into (3.68), we have

ϕl
k,d ≤ r̂k,d∥x̂l−1

k−1−xl−1
k−1∥+(rk,dϵk,d +C′

k,d∆k,dϵk,drk,d)∥xl−1
k−1∥. (3.70)

By following the same procedure [cf. (3.68) and (3.69)], we obtain

ϕl
k,u ≤ r̂k,u∥x̂l−1

k+1−xl−1
k+1∥+(rk,uϵk,u +C′

k,u∆k,uϵk,urk,u)∥xl−1
k+1∥. (3.71)
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3. Bound of ∥x̂l
k−xl

k∥. Using the notations tk, tk,d and tk,u in Theorem 3.23, we then
have a set of recursions, for k = 0,1, . . . ,K

∥x̂l
k−xl

k∥ ≤cσ(r̂k,d∥x̂l−1
k−1−xl−1

k−1∥+ tk,d∥xl−1
k−1∥+∥x̂l−1

k −xl−1
k ∥+ tk∥xl−1

k ∥

+ r̂k,u∥x̂l−1
k+1−xl−1

k+1∥+ tk,u∥xl−1
k+1∥).

(3.72)

Define vector bl as [bl]k = ∥x̂l
k−xl

k∥ with b0 = 0. Let βl collect the energy of all outputs
at layer l, with [βl]k := ∥xl−1

k ∥. We can express the Euclidean distances of all k-simplicial
signal outputs for k = 0,1, . . . ,K , as

bl ⪯ cσẐbl−1 + cσTβl−1 (3.73)

where ⪯ indicates elementwise smaller than or equal, and we have

T =


t0 t0,u
t1,d t1 t1,u

. . .
. . .

. . .

tK−1,d tK−1 tK−1,u
tK,d tK

 and

Ẑ =


1 r̂0,u
r̂1,d 1 r̂1,u

. . .
. . .

. . .

r̂K−1,d 1 r̂K−1,u
r̂K,d 1

 .
(3.74)

We are now interested in building a recursion for (3.73) for all layers l. We start with term
xl

k . Based on its expression in (3.14), we bound it as

∥xl
k∥ ≤ cσ(∥Hl

k,d∥∥Rk,d∥∥xl−1
k−1∥+∥Hl

k∥∥xl−1
x ∥+∥Hl

k,u∥∥Rk,u∥∥xl−1
k+1∥)

≤ cσ(rk,d∥xl−1
k−1∥+∥xl−1

x ∥+ rk,u∥xl−1
k+1∥),

(3.75)

which holds for k = 0,1, . . . ,K . Thus, it can be expressed in the vector form as βl ⪯
cσZβl−1, with

Z =


1 r0,u
r1,d 1 r1,u

. . .
. . .

. . .

rK−1,d 1 rK−1,u
rK,d 1

 . (3.76)

Similarly, we have βl−1 ⪯ cσZβl−2, leading to βl ⪯ cl
σZlβ0 with β0 = β [cf. Assump-

tion 3.22]. We can then express the bound (3.73) as

bl ⪯ cσẐbl−1 + cl
σTZl−1β. (3.77)
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Thus, we have

b0 = 0, b1⪯ cσTβ, b2⪯ c2
σ(ẐTβ+TZβ), b3⪯ c3

σ(Ẑ2Tβ+ẐTZβ+TZ2β), (3.78)

and so on, which, inductively, leads to

bl ⪯ cl
σ

l∑
i=1

Ẑi−1TZl−iβ. (3.79)

Bt setting l = L, we obtain the bound bL ⪯ d = cL
σ

∑L
l=1 Ẑl−1TZL−lβ in Theorem 3.23.

□

3.F Experiment details
3.F.1 Synthetic experiments on Dirichlet energy evolution
We created a synthetic SC with 100 nodes, 241 edges and 135 triangles with the GUDHI
toolbox Rouvreau [2015], and we set the initial inputs on three levels of simplices to be
random sampled from U([−5,5]). We then built a SCCNN composed of simplicial shifting
layers with weight w0 and nonlinearities including id,tanh and relu. When the weight
follows the condition in Proposition 3.6, from Fig. 3.7 (the dashed lines labled as “shift”),
we see that the Dirichlet energies of all three outputs exponentially decrease as the number
of layers increases. We then uncoupled the lower and upper parts of the Laplacians in the
edge space in the shifting layers by setting γ , 1. As shown in Fig. 3.7 (the dotted lines),
the Dirichlet energies of the edge outputs decrease at a slower rate than before. Lastly,
we added the inter-simplicial couplings, which overcome the oversmoothing problems, as
shown by the solid lines.

1 10 100

Layer

10−23

10−19

10−15

10−11

10−7

10−3

101

D
(x
k
) shift,node

with proj.,node

shift,edge

with proj.,edge

uncouple lower/upper,edge

shift,tri.

with proj.,tri.

(a) identity, γ = 2

1 10 100

Layer

10−23

10−19

10−15

10−11

10−7

10−3

101

D
(x
k
) shift,node

with proj.,node

shift,edge

with proj.,edge

uncouple lower/upper,edge

shift,tri.

with proj.,tri.

(b) tanh, γ = 2

1 10 100

Layer

10−56

10−47

10−38

10−29

10−20

10−11

10−2

D
(x
k
) shift,node

with proj.,node

shift,edge

with proj.,edge

uncouple lower/upper,edge

shift,tri.

with proj.,tri.

(c) relu, γ = 5

Figure 3.7: Oversmoothing effects of simplicial shifting and the mitigation effects of uncoupling lower and
upper adjacencies and accounting for inter-simplicial couplings.

3.F.2 Additional details on Forex experiments
In the forex dataset, there are 25 currencies which can be exchanged pairwise at three
timestamps. We first represented their exchange rates on the edges and took the logrithm,
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Table 3.8: Forex results (nmse,arbitrage) and the corresponding hyperparameters.

Methods Random noise “Curl noise” Interpolation
Input 0.119±0.004, 25.19±0.874 0.552±0.027, 122.36±5.90 0.717±0.030, 106.40±0.902
ℓ2-norm 0.036±0.005, 2.29±0.079 0.050±0.002, 11.12±0.537 0.534±0.043 , 9.67±0.082
SNN 0.11±0.005, 23.24±1.03 0.446±0.017, 86.947±2.197 0.702±0.033, 104.738±1.042

L= 5,F = 64,T = 4, tanh L= 6,F = 64,T = 3, tanh L= 2,F = 64,T = 1, tanh
PSNN 0.008±0.001, 0.984±0.17 0.000±0.000, 0.000±0.000 0.009±0.001, 1.128±0.329

L= 6,F = 64, tanh L= 5,F = 1, id L= 6,F = 64, tanh
Bunch 0.981±0.0 , 22.912±1.228 0.981±0.0, 22.912±1.228 0.983±0.005 , 19.887±6.341

— — —
MPSN 0.039±0.004, 7.748±0.943 0.076±0.012, 14.922±2.493 0.117±0.063, 23.147±11.674

L= 2,F = 64, id, sum L= 4,F = 64, tanh, mean L= 2,F = 64, tanh, sum
SCCNN, id 0.027±0.005, 0.000±0.000 0.000±0.000, 0.000±0.000 0.265±0.036 , 0.000±0.000

L= 2,F = 16,Td = 0,Tu = 3 L= 5,F = 1,Td = 1,Tu = 1 L= 2,F = 16,Td = 0,Tu = 3
SCCNN, tanh 0.002±0.000, 0.325±0.082 0.000±0.000, 0.003±0.003 0.003±0.002, 0.279±0.151

L= 6,F = 64,Td = 5,Tu = 2 L= 1,F = 64,Td = 2,Tu = 2 L= 6,F = 64,Td = 5,Tu = 1

i.e., [x1][i,j] = log10 r
i/j = −[x1][j,i]. Then, the total arbitrage can be computed as the

total curl B⊤
2 x1.

We considered to recover the exchange rates under three types of settings: 1) random noise
following normal distribution such that the signal-to-noise ration is−3dB, which is spread
over the whole simplicial spectrum; 2) “curl noise” projected from triangle noise following
normal distribution such that the signal-to-noise ration is −3dB, which is distributed only
in the curl space; and 3) 50% of the total forex rates are recorded and the other half is not
available, set as zero values.

First, as a baseline method, we chose ℓ2 norm of the curl B2x1 as a regularizer to reduce
the total arbitrage, i.e., x̂1 = (I+wL1,u)−1x1 with a regularization weight w ∈ [0,10]. For
the learning methods, we consider the following hyperparameter ranges: the number of
layers to be L ∈ {1,2, . . . ,6}, the number of intermediate features to be F ∈ {1,16,32,64}.
For the convolutional methods including SNN Ebli et al. [2020], PSNN Roddenberry et al.
[2021], Bunch Bunch et al. [2020] and SCCNN, we considered the intermediate layers
with nonlinearities including id and tanh. The convolution orders of SNN and SCCNN
are set to be {1,2, . . . ,5}. For the message-passing method, MPSN Bodnar et al. [2021b],
we considered the setting from [Bodnar et al., 2021b, Eq. 35] where the sum and mean
aggregations are used and each message update function is a two-layer MLP. With these
noisy or masked rates as inputs and the clean arbitrage-free rates as outputs, we trained
different learning methods at the first timestamp, and validated the hyperparameters at
the second timestamp, and tested their performance at the thrid one. During the training
of 1000 epochs, a normalized MSE loss function and adam optimizer with a fixed learning
rate of 0.001 are used. We run the same experiments for 10 times. Table 3.8 reports the best
results (nmse) and the total arbitrage, together with the hyperparameters.

3.F.3 Additional details on Simplex prediction
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Method in Detail

The method for simplex prediction is generalized from link prediction based on GNNs by
Zhang & Chen [2018]: For k-simplex prediction, we use an SCCNN in an SC of order up to k
to first learn the features of lower-order simplices up to order k−1. Then, we concatenate
these embedded lower-order simplicial features and input them to a two-layer MLP which
predicts if a k-simplex is positive (closed, shall be included in the SC) or negative (open,
not included in the SC).

For example, in 2-simplex prediction, consider an SC of order two, which is built based on
nodes, edges and (existing positive) triangles. Given the initial inputs on nodes x0 and on
edges x1 and zero inputs on triangles x2 = 0 since we assume no prior knowledge on trian-
gles, for an open triangle t= [i, j,k], an SCCNN is used to learn features on nodes and edges
(denoted by y). Then, we input the concatenation of the features on three nodes or three
edges to an MLP, i.e., MLPnode([y0]i∥[y0]j∥[y0]k) or MLPedge([y][i,j]∥[y][j,k]∥[y][i,k]),
to predict if triangle t is positive or negative. A MLP taking both node and edge features
is possible, but we keep it on one simplex level for complexity purposes. Similarly, we
consider an SCCNN in an SC of order three for 3-simplex prediction, which is followed by
an MLP operating on either nodes, edges or triangles.

Data Preprocessing

We consider the data from the Semantic Scholar Open Research Corpus Ammar et al. [2018]
to construct a coauthorship complex where nodes are authors and collaborations between
k-author are represented by (k−1)-simplices. Following the preprocessing in Ebli et al.
[2020], we obtain 352 nodes, 1472 edges, 3285 triangles, 5019 tetrahedrons (3-simplices) and
a number of other higher-order simplices. The node signal x0, edge flow x1 and triangle
flow x2 are the numbers of citations of single author papers and the collaborations of two
and three authors, respectively.

For the 2-simplex prediction, we use the collaboration impact (the number of citations)
to split the total set of triangles into the positive set TP = {t|[x2]t > 7} containing 1482
closed triangles and the negative set TN = {t|[x2]t ≤ 7} containing 1803 open triangles
such that we have balanced positive and negative samples. We further split the 80% of the
positive triangle set for training, 10% for validation and 10% for testing; likewise for the
negative triangle set. Note that in the construction of the SC, i.e., the incidence matrix B2,
Hodge Laplacians L1,u and L2,d, we ought to remove negative triangles in the training set
and all triangles in the test set. That is, for 2-simplex prediction, we only make use of the
training set of the positive triangles since the negative ones are not in the SC.

Similarly, we prepare the dataset for 3-simplex (tetrahedron) prediction, amounting to the
tetradic collaboration prediction. We obtain balanced positive and negative tetrahedron
sets based on the citation signal x3. In the construction of B3, L2,u and L3,d, we again
only use the tetrahedrons in the positive training set.
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Models

For comparison, we first use heuristic methods proposed in Benson et al. [2018] as baselines
to determine if a triangle t= [i, j,k] is closed, namely, 1) Harmonic mean: st = 3/([x1]−1

[i,j] +
[x1]−1

[j,k] +[x1]−1
[i,k]), 2) Geometric mean: st = limp→0[([x1]p[i,j] +[x1]p[j,k] +[x1]p[i,k])]

1/p,
and 3) Arithmetic mean: st = ([x1][i,j] +[x1][j,k] +[x1][i,k])/3, which compute the triangle
weight based on its three faces. Similarly, we generalized these mean methods to compute
the weight of a 3-simplex [i, j,k,m] based on the four triangle faces in 3-simplex prediction.

We then consider different learning methods. Specifically, 1) “Bunch” by Bunch et al.
[2020] (we also generalized this model to 3-dimension for 3-simplex prediction); 2) Message
passing simplicial network (“MPSN”) by Bodnar et al. [2021b] which provides a baseline
of message passing scheme in comparison to the convolution scheme; 3) Principled SNN
(“PSNN”) by Roddenberry et al. [2021]; 4) SNN by Ebli et al. [2020]; 5) SCNN by Yang et al.
[2021]; 6) GNN by Defferrard et al. [2016]; 7) MLP: providing as a baseline for the effect of
using inductive models.

For MLP, Bunch, MPSN and our SCCNN, we consider the outputs in the node and edge
spaces, respectively, for 2-simplex prediction, which are denoted by a suffix “-Node” or
“-Edge”. For 3-simplex prediction, the output in the triangle space can be used as well,
denoted by a suffix “-Tri.”, where we also build SCNNs in both edge and triangle spaces.

Experimental Setup and Hyperparameters

We consider the normalized Hodge Laplacians and incidence matrices, a particular version
of the weighted ones Grady & Polimeni [2010]; Horak & Jost [2013]. Specifically, we use
the symmetric version of the normalized random walk Hodge Laplacians in the edge space,
proposed by Schaub et al. [2020], which were used in Bunch et al. [2020]; Chen et al. [2022c]
as well. We generalized the definitions for triangle predictions.

Hyperparameters 1) the number of layers: L ∈ {1,2,3,4,5}; 2) the number of interme-
diate and output features to be the same as F ∈ {16,32}; 3) the convolution orders for
SCCNNs are set to be the same, i.e., T ′

d = Td = Tu = T ′
u = T ∈ {1,2,3,4,5}. We do so to

avoid the exponential growth of the parameter search space. For GNNs [Defferrard et al.,
2016] and SNNs [Ebli et al., 2020], we set the convolution orders to be T ∈ {1,2,3,4,5}
while for SCNNs [Yang et al., 2022a], we allow the lower and upper convolutions to have
different orders with Td,Tu ∈ {1,2,3,4,5}; 4) the nonlinearity in the feature learning
phase: LeakyReLU with a negative slope 0.01; 5) MPSN is set as Bodnar et al. [2022]; 6)
the MLP in the prediction phase: two layers with a sigmoid nonlinearity. For 2-simplex
prediction, the number of the input features for the node features is 3F , and for the edge
features is 3F . For 3-simplex prediction, the number of the input features for the node
features is 4F , for the edge features is 6F and for the triangle features is 4F since a
3-simplex has four nodes, six edges and four triangles. The number of the intermediate
features is the same as the input features, and that of the output features is one; and, 7) the
binary cross entropy loss and the adam optimizer with a learning rate of 0.001 are used;
the number of the epochs is 1000 where an early stopping is used. We compute the AUC to
compare the performance and run the same experiments for ten times with random data
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splitting.

Results

In Table 3.9, we report the best results of each method with the corresponding hyperpa-
rameters. Different hyperparameters can lead to similar results, but we report the ones
with the least complexity. All experiments for simplex predictions were run on a single
NVIDIA A40 GPU with 48 GB of memory using CUDA 11.5.

Table 3.9: 2- (Left) and 3-Simplex (Right) prediction AUC (%) results.

Methods AUC Parameters

Harm. Mean 62.8±2.7 —
Arith. Mean 60.8±3.2 —
Geom. Mean 61.7±3.1 —
MLP-Node 68.5±1.6 L = 1,F = 32

GNN 93.9±1.0 L = 5,F = 32,T = 2
SNN-Edge 92.0±1.8 L = 5,F = 32,T = 5
PSNN-Edge 95.6±1.3 L = 5,F = 32
SCNN-Edge 96.5±1.5 L = 5,F = 32,Td = 5,Tu = 2

Bunch-Node 98.3±0.5 K = 1,L = 4,F = 32
MPSN-Node 98.1±0.5 K = 1,L = 3,F = 32
SCCNN-Node 98.7±0.5 K = 1,L = 2,F = 32,T = 2

Methods AUC Parameters

Harm. Mean 63.6±1.6 —
Arith. Mean 62.2±1.4 —
Geom. Mean 63.1±1.4 —
MLP-Tri. 69.0±2.2 L = 3,F = 32

GNN 96.6±0.5 L = 5,F = 32,T = 5
SNN-Tri. 95.1±1.2 L = 5,F = 32,T = 5
PSNN-Tri. 98.1±0.5 L = 5,F = 32
SCNN-Tri. 98.3±0.4 L = 5,F = 32,Td = 2,Tu = 1

Bunch-Edge 98.5±0.5 K = 3,L = 4,F = 16
MPSN-Edge 99.2±0.3 K = 3,L = 3,F = 32
SCCNN-Node 99.4±0.3 K = 3,L = 3,F = 32,T = 3

Complexity

Table 3.10: (Left) Complexity of the best three methods for 2-simplex prediction. (Right) Running time of
SCCNN with different layers and convolution orders.

Method #params. Running time (seconds per epoch)

SCCNN 24288 0.073
Bunch 21728 0.140
MPSN 84256 0.028

Hyperparams. T = 2 T = 5

L = 2 0.073 0.082
L = 3 0.110 0.130
L = 5 0.192 0.237

Here we report the number of parameters and the running time of SCCNN for 2-simplex
prediction on one NVIDIA Quadro K2200 with 4GB memory, compared with the two best
alternatives. MPSN, compared to convolutional methods, has three times more parameters,
analogous to the comparison between message-passing and graph convolutional NNs. We
also report the running time as the layers and convolution orders increase.

Ablation Study

We perform an ablation study to observe the roles of different components in SCCNNs.

SC Order. We investigate the influence of the SC orderK . Table 3.11 reports the 2-simplex
prediction results forK = {1,2} and the 3-simplex prediction results forK = {1,2,3}. We
observe that for k-simplex prediction, it does not necessarily guarantee a better prediction
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with a higher-order SC, which further indicates that a positive simplex could bewell encoded
by both its faces and other lower-order subsets. For example, in 2-simplex prediction, SC of
order one gives better results than SC of order two (similar for Bunch), showing that in this
coauthorship complex, triadic collaborations are better encoded by features on nodes than
pairwise collaborations. In 3-simplex prediction, SCs of different orders give similar results,
showing that tetradic collaborations can be encoded by nodes, as well as by pairwise and
triadic collaborations.

Table 3.11: Prediction results of SCCNNs with different SC order K .

Method 2-Simplex Parameters

SCCNN-Node 98.7±0.5 K = 1,L = 2,F = 32,T = 2
SCCNN-Node 98.4±0.5 K = 2,L = 2,F = 32,T = 2
Bunch-Node 98.3±0.4 K = 1,L = 4,F = 32
Bunch-Node 98.0±0.4 K = 2,L = 4,F = 32
MPSN-Node 94.5±1.5 K = 1,L = 3,F = 32
MPSN-Node 98.1±0.5 K = 2,L = 3,F = 32

SCCNN-Edge 97.9±0.9 K = 1,L = 3,F = 32,T = 5
SCCNN-Edge 95.9±1.0 K = 2,L = 5,F = 32,T = 3
Bunch-Edge 97.3±1.1 K = 1,L = 4,F = 32
Bunch-Edge 94.6±1.2 K = 2,L = 4,F = 32
MPSN-Edge 94.1±2.4 K = 1,L = 3,F = 32
MPSN-Edge 97.0±1.2 K = 2,L = 2,F = 16

Method 3-Simplex Parameters

SCCNN-Node 99.3±0.3 K = 1,L = 2,F = 32,T = 1
SCCNN-Node 99.3±0.2 K = 2,L = 2,F = 32,T = 5
SCCNN-Node 99.4±0.3 K = 3,L = 3,F = 32,T = 3
MPSN-Node 96.0±1.2 K = 1,L = 3,F = 32
MPSN-Node 98.2±0.8 K = 2,L = 2,F = 32

SCCNN-Edge 98.9±0.5 K = 1,L = 3,F = 32,T = 5
SCCNN-Edge 99.2±0.4 K = 2,L = 5,F = 32,T = 5
SCCNN-Edge 99.0±1.0 K = 3,L = 5,F = 32,T = 5
MPSN-Edge 96.3±1.1 K = 1,L = 3,F = 32
MPSN-Edge 98.3±0.8 K = 2,L = 3,F = 32

SCCNN-Tri. 97.9±0.7 K = 2,L = 4,F = 32,T = 4
SCCNN-Tri. 97.4±0.9 K = 3,L = 4,F = 32,T = 4
MPSN-Tri. 99.1±0.2 K = 2,L = 3,F = 32

Missing Components in SCCNN.With a focus on 2-simplex prediction with SCCNN-
Node of order one, to avoid overcrowded settings, we study how each component of an
SCCNN influences the prediction. We consider the following settings without: 1) “Edge-
to-Node”, where the projection x0,u from edge to node is not included, equivalent to
GNN; 2) “Node-to-Node”, where for node output, we have xl

0 = σ(Hl
0,uR1,uxl−1

1 ); 3)
“Node-to-Edge”, where the projection x1,d from node to edge is not included, i.e., we
have xl

1 = σ(Hl
1xl−1

1 ); and 4) “Edge-to-Edge”, where for edge output, we have xl
1 =

σ(Hl
1,dR1,dxl−1

0 ).

Table 3.12: 2-Simplex prediction (SCCNN-Node without certain components or with limited inputs).

Missing Component AUC Parameters
— 98.7±0.5 L= 2,F = 32,T = 2
Edge-to-Node 93.9±0.8 L= 5,F = 32,T = 2
Node-to-Node 98.7±0.4 L= 4,F = 32,T = 2
Edge-to-Edge 98.5±1.0 L= 3,F = 32,T = 3
Node-to-Edge 98.8±0.3 L= 4,F = 32,T = 3

Missing Input AUC Parameters
— 98.7±0.5 L= 2,F = 32,T = 2
Node input 98.2±0.5 L= 2,F = 32,T = 4
Edge input 98.1±0.4 L= 2,F = 32,T = 3
Node, Edge inputs 50.0±0.0 —

From the results in Table 3.12 (Left), we see that “No Edge-to-Node”, i.e., GNN, gives much
worse results as it leverages no information on edges with limited expressive power. For
cases with other components missing, a similar performance can be achieved, however, at
a cost of the model complexity, with either a higher convolution order or a larger number
of layers L, while the latter in turn degrades the stability of the SCCNNs, as discussed
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in Section 3.4. SCCNNs with certain inter-simplicial couplings pruned/missing can be
powerful as well (this is similarly shown by [Bodnar et al., 2021b, Thm. 6]), but if we did
not consider certain component, it comes with a cost of complexity which might degrade
the model stability if more number layers are required.

Limited Input. We study the influence of limited input data for model SCCNN-Node of
order two. Specifically, we consider the input on either nodes or edges is missing. From
Table 3.12, we see that the prediction performance does not deteriorate at a cost of the model
complexity (higher convolution orders) when a certain part of the input missing except
with full zeros as input. This ability of learning from limited data shows the robustness of
SCCNNs.

Stability Analysis

We then perform a stability analysis of SCCNNs. We artificially add perturbations to the
normalization matrices when defining the Hogde Laplacians, which resemble the weights of
simplices. We consider small perturbations E0 on node weights which is a diagonal matrix
following that ∥E0∥ ≤ ϵ0/2. We generate its diagonal entries from a uniform distribution
[−ϵ0/2, ϵ0/2) with ϵ0 ∈ [0,1], which represents one degree of deviation of the node weigths
from the true ones. Similarly, perturbations on edge weights and triangle weights are
applied to study the stability. In a SCCNN-Node for 2-simplex prediction of K = 2, we
measure the distance between the simplicial outputs with and without perturbations on
nodes, edges, and triangles, i.e., ∥xL

k − x̂L
k ∥/∥xL

k ∥, for k = 0,1,2.

Stability dependence. We first show the stability mutual dependence between different
simplices in Fig. 3.8. We see that under perturbation on node weights, the triangle output
is not influenced until the number of layers becomes two; likewise, the node output is not
influenced by perturbations on triangle weights with a one-layer SCCNN. Also, a one-layer
SCCNN under perturbations on edge weights will cause outputs on nodes, edges, triangles
perturbed. Lastly, we observe that the same degree of perturbations added to different
simplices causes different degrees of instability, owing to the number nk of k-simplices in
the stability bound. Since N0 <N1 <N2, the perturbations on node weights cause less
instability than those on edge and triangle weights.
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Figure 3.8: The stabilities of different simplicial outputs are dependent on each other.

Number of Layers. Fig. 3.9 shows that the stability of SCCNNs degrades as the number of
layers increases as studied in Theorem 3.23. As the NN deepens, the stability deteriorates,
which corresponds to our analysis of using shallow layers.
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Figure 3.9: The relative difference of SCCNN outputs with and without perturbations in terms of different
numbers of layers. We consider perturbations on edge weights.

3.F.4 Additional details on Trajectory prediction

Problem Formulation

A trajectory of lengthm can be modeled as a sequence of nodes [v0,v1, . . . ,vm−1] in an
SC. The task is to predict the next node vm from the neighbors of vm−1, Nvm−1 . The
algorithm in Roddenberry et al. [2021] first represents the trajectory equivalently as a
sequence of oriented edges [[v0,v1], [v1,v2], . . . , [vm−2,vm−1]]. Then, an edge flow x1 is
defined, whose value on an edge e is [x1]e = 1 if edge e is traversed by the trajectory
in a forward direction, [x1]e = −1 if edge e is traversed in a backward direction by the
trajectory, and [x1]e = 0, otherwise.

With the trajectory flow x1 as the input, together with zero inputs on the nodes and
triangles, an SCCNN of order two is used to generate a representation xL

1 of the trajectory,
which is the output on edges. This is followed by a projection step xL

0,u = B1WxL
1 , where

the output is first passed through a linear transformation via W, then projected into the
node space via B1. Lastly, a distribution over the candidate nodes Nvm−1 is computed via
a softmax operation, nj = softmax([xL

0,u]j), j ∈Nvm−1 . The best candidate is selected as
vm = argmaxjnj . We refer to Roddenberry & Segarra [2019, Alg. S-2] for more details.

Given that an SCCNN of order two generates outputs also on nodes, we can directly apply
the node feature output xL

0 to compute a distribution over the candidate nodes Nvm−1
without the projection step. We refer to this as SCCNN-Node, and the method of using the
edge features with the projection step as SCCNN-Edge.

Model

In this experiment, we consider the following methods: 1) PSNN by Roddenberry et al.
[2021]; 2) SNN by Ebli et al. [2020]; 3) SCNN by Yang et al. [2022a] where we consider
different lower and upper convolution orders Td,Tu; and 4) Bunch by Bunch et al. [2020]
where we consider both the node features and edge features, namely, Bunch-Node and
Bunch-Edge.

Synthetic Data. Following the procedure in Schaub et al. [2020], we generate 1000
trajectories as follows. First, we create an SC with two “holes” by uniformly drawing 400
random points in the unit square, and then a Delaunay triangulation is applied to obtain a
mesh, followed by the removal of nodes and edges in two regions. To generate a trajectory,
we consider a starting point at random in the lower-left corner, and then connect it via a
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shortest path to a random point in the upper left, center, or lower-right region, which is
connected to another random point in the upper-right corner via a shortest path.

We consider the random walk Hodge Laplacians Schaub et al. [2020]. For Bunch method,
we set the shifting matrices as the simplicial adjacency matrices defined in Bunch et al.
[2020]. We consider different NNs with three intermediate layers where each layer contains
F = 16 intermediate features. The tanh nonlinearity is used such that the orientation
equivariance holds. The final projection n generates a node feature of dimension one. In
the 1000-epoch training, we use the cross-entropy loss function between the output d and
the true candidate and we consider an adam optimizer with a learning rate of 0.001 and
a batch size 100. To avoid overfitting, we apply a weight decay of 5 ·10−6 and an early
stopping.

As done in Roddenberry et al. [2021], besides the standard trajectory prediction task, we
also perform a reverse task where the training set remains the same but the direction of
the trajectories in the test set is reversed and a generalization task where the training
set contains trajectories running along the upper left region and the test set contains
trajectories around the other region. We evaluate the correct prediction ratio by averaging
the performance over 10 different data generations.

Real Data. We also consider the Global Drifter Program dataset3 localized around Mada-
gascar. It consists of ocean drifters whose coordinates are logged every 12 hours. An SC
can then be created as Schaub et al. [2020] by treating each mesh as a node, connecting
adjacent meshes via an edge and filling the triangles, where the “hole” is yielded by the
island. Following the process in Roddenberry et al. [2021], it results in 200 trajectories and
we use 180 of them for training. In the training, a batch size of 10 is used and no weight
decay is used. The rest experiment setup remains the same as the synthetic case.

Results

We report the prediction accuracy of different tasks for both datasets in Table 3.13. We
first investigate the effects of applying higher-order SCFs in the simplicial convolution
and accounting for the lower and upper contributions. From the standard accuracy for
both datasets, we observe that increasing the convolution orders improves the prediction
accuracy, e.g., SCNNs become better as the orders Td,Tu increase and perform always
better than PSNN, and SCCNNs better than Bunch. Also, differentiating the lower and
upper convolutions does help improve the performance as SCNN of orders Td = Tu = 3
performs better than SNN of T = 3.

However, accounting for the node and triangle contributions in SCCNNs does not help the
prediction compared to the SCNNs, likewise for Bunch compared to PSNN. This is due to
the zero node and triangle inputs because there are no available node and triangle features.
Similarly, the prediction directly via the node output features is not accurate compared to
projection from edge features.

Moreover, we also observe that the performance of SCCNNs that are trained with the same
data does not deteriorate in the reverse task because the orientation equivariance ensures
3http://www.aoml.noaa.gov/envids/gld/,

http://www.aoml.noaa.gov/envids/gld/
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SCCNNs to be unaffected by the orientations of the simplicial data. Lastly, we see that, like
other NNs on SCs, SCCNNs have good transferability to the unseen data.

Table 3.13: Trajectory Prediction Accuracy. (Left): Synthetic trajectory in the standard, reverse and general-
ization tasks. (Right): Ocean drifter trajectories. For SCCNNs, we set the lower and upper convolution orders
Td,Tu to be the same as T .

Methods Standard Reverse Generalization Parameters

PSNN 63.1±3.1 58.4±3.9 55.3±2.5 —
SCNN 65.6±3.4 56.6±6.0 56.1±3.6 Td = Tu = 2
SCNN 66.5±5.8 57.7±5.4 60.6±4.0 Td = Tu = 3
SCNN 67.3±2.3 56.9±4.8 59.4±4.2 Td = Tu = 4
SCNN 67.7±1.7 55.3±5.3 61.2±3.2 Td = Tu = 5
SNN 65.5±2.4 53.6±6.1 59.5±3.7 T = 3

Bunch-Node 35.4±3.4 38.1±4.6 29.0±3.0 —
Bunch-Edge 62.3±4.0 59.6±6.1 53.9±3.1 —
SCCNN-Node 46.8±7.3 44.5±8.2 31.9±5.0 T = 1
SCCNN-Edge 64.6±3.9 57.2±6.3 54.0±3.0 T = 1
SCCNN-Node 43.5±9.6 44.4±7.6 32.8±2.6 T = 2
SCCNN-Edge 65.2±4.1 58.9±4.1 56.8±2.4 T = 2

Standard Parameters

49.0±8.0 —
52.5±9.8 Td = Tu = 2
52.5±7.2 Td = Tu = 3
52.5±8.7 Td = Tu = 4
53.0±7.8 Td = Tu = 5
52.5±6.0 T = 3

35.0±5.9 —
46.0±6.2 —
40.5±4.7 T = 1
52.5±7.2 T = 1
45.5±4.7 T = 2
54.5±7.9 T = 2

Convolution Order and Integral Lipschitz Property

Here, to illustrate that the integral Lipschitz property of the SCFs helps the stability of
NNs on SCs, we consider the effect of regularizer rIL against perturbations in PSNNs and
SCNNs with different Td and Tu for the standard synthetic trajectory prediction. The
regularization weight on rIL is set as 5 ·10−4 and the number of samples to approximate
the frequencies is set such that the sampling interval is 0.01.

Fig. 3.10 shows the prediction accuracy and the relative distance between the edge outputs
of the NNs trained with and without the integral Lipschitz regularizer in terms of different
levels of perturbations. We see that the integral Lipschitz regularizer helps the stability of
the NNs, especially for large SCF orders, where the edge output is less influenced by the
perturbations compared to without the regularizer. Meanwhile, SCNN with higher-order
SCFs, e.g., Td = Tu = 5, achieves better prediction than PSNN (with one-step simplicial
shifting), while maintaining a good stability with its output not influenced by perturbations
drastically.

We also measure the lower and upper integral Lipschitz constants of the trained NNs across
different layers and features, given by maxλk,G |λk,Gh̃k,G(λk,G)| and
maxλk,C |λk,Ch̃k,C(λk,C)|, shown in Fig. 3.11. We see that the SCNN trained with rIL
indeed has smaller integral Lipschitz constants than the one trained without the regularizer,
thus, a better stability, especially for NNs with higher-order SCFs.
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Figure 3.10: Effect of the integral Lipschitz regularizer rIL in the task of synthetic trajectory prediction against
different levels ϵ of random perturbations on L1,d and L1,u. We show the accuracy (Top row) and the relative
distance between the edge output (Bottom row) for different NNs on SCs with and without rIL. SCNN13 is the
SCNN with Td = 1 and Tu = 3.
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Figure 3.11: The integral Lipschitz constants of SCFs at each layer of the trained SCNNs with and without
the integral Lipschitz regularizer rIL. We use symbols cl

k,d and cl
k,u to denote the lower and upper integral

Lipschitz constants at layer l. Regularizer rIL promotes the integral Lipschitz property, thus, the stability,
especially for NNs with large SCF orders.
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4
Hodge-Compositional Edge

Gaussian Processes

In Chapters 2 and 3, we have developed the processing and learning of signals on simplicial
complexes based on the simplicial convolution operator. Yet, these methods remain determin-
istic, composing of the first part of this thesis. To quantify the uncertainty of the learning,
we consider a probabilistic setting from now on. When viewing simplicial signals as random
variables, we first consider the Gaussian case. In this chapter, we focus on the edge flows
in simplicial 2-complexes, and introduce edge Gaussian processes (GPs) that are designed to
model the gradient, curl and harmonic components of edge functions in a Hodge-compositional
manner. This allows them to independently learn each component, providing increased expres-
siveness and interpretability when compared to directly extending edge GPs from graph GPs.
This chapter is based on the work of Yang et al. [2024].

4.1 Introduction
Gaussian processes (GPs) are a widely used class of statistical models capable of quan-
tifying uncertainty associated to their own predictions [Rasmussen & Williams, 2006].
These models are determined by covariance kernels which encode prior knowledge about
the unknown prediction function. Choosing an appropriate kernel is often challenging,
particularly when the input space is non-Euclidean [Duvenaud, 2014].

Developing GPs on graphs has been a subject of recent work, which requires structured
kernels to encode the dependence between nodes [Venkitaraman et al., 2020; Zhi et al.,
2023], like the diffusion [Smola & Kondor, 2003] or random walk kernels [Vishwanathan
et al., 2010]. More recently, Borovitskiy et al. [2021] derived the more general family of
Matérn kernels on graphs from stochastic partial differential equations (SPDEs) thereon,
mirroring the continuous approaches onmanifolds [Azangulov et al., 2022; 2023; Borovitskiy
et al., 2020]. Nikitin et al. [2022] incorporated the temporal factor in this framework to
build temporal-graph kernels. However, GPs in these works are targeted for modeling
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functions on the nodes of networks.

We instead focus on functions defined on the edges, of particular interest for modeling
edge-based dynamical processes in many complex networks, such as flows of energy, signal
or mass [Schaub et al., 2014]. For example, in water supply networks, we typically monitor
the flow rates within pipes (edges) connecting tanks (nodes) [Zhou et al., 2022]. Other
examples include energy flows in power grids [Jia et al., 2019], synaptic signals between
neurons in brain networks [Faskowitz et al., 2022], and exchange rates on trading paths
(edges) of currencies (nodes) [Jiang et al., 2011].

While it might seem intuitive to use node-based methods for edge-based tasks using line-
graphs [Godsil & Royle, 2001], this often yields sub-optimal solutions [Jia et al., 2019].
Alternatively, recent successes in signal processing and neural networks for edge data have
emerged from modeling flows on the edge set of a simplicial 2-complex (SC2), including
[Barbarossa & Sardellitti, 2020; Isufi & Yang, 2022; Jia et al., 2019; Roddenberry et al., 2021;
Schaub et al., 2021; Yang et al., 2022b], among others. A SC2 can be viewed as a graph
with the additional set of triangular faces, encoding how edges are adjacent to each other
via nodes or faces. A SC2 also allows to characterize key properties of edge flows using
discrete concepts of divergence (div) and curl [Lim, 2020; Lovász, 2004], measuring how they
diverge at nodes and circulate along faces. For example, electric currents in circuit networks
respecting the Kirchhoff’s law are div-free [Grady & Polimeni, 2010], and arbitrage-free
exchange rates are curl-free along a loop of trading paths [Jiang et al., 2011]. Moreover,
edge functions on a SC2 admit the Hodge decomposition into three parts: gradient, curl
and harmonic components, being curl-free, div-free or both, respectively [Lim, 2020]. This
provides unique insights in various applications including ranking [Jiang et al., 2011],
gaming theory [Candogan et al., 2011], brain networks [Vijay Anand et al., 2022] and
finance [Fujiwara & Islam, 2020]. Nevertheless, existing works on edge-based learning
remain deterministic and there is a lack of principled ways to define GP priors on the edge
set of SCs, which is the central goal of this work.

Our main contribution lies in the proposal of Hodge-compositional edge GPs. We build them
as combinations of three GPs, each modeling a specific part of the Hodge decomposition
of an edge function, namely the gradient, curl and harmonic parts. With a focus on the
Matérn family, we show that each of them can be linked to a SPDE, extending the framework
used by Borovitskiy et al. [2020; 2021; 2023]. Compared to a direct extension of graph
GPs, they enable separate learning of the different Hodge components, which allows us to
capture the practical behavior of edge flows. We also demonstrate their practical potential
in edge-based learning tasks in foreign currency exchange markets, ocean flow analysis
and water supply networks.

4.2 Background
A random function f :X →R defined over a setX is a Gaussian process f ∼GP(µ,k) with
mean function µ(·) and kernel k(·, ·) if, for any finite set of points x = [x1, . . . ,xn]⊤ ∈ Xn,
the random vector f(x) = [f(x1), . . . ,f(xn)]⊤ is multivariate Gaussian with mean vector
µ(x) and covariance matrix k(x,x).
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The kernel k of a prior GP encodes prior knowledge about the unknown function while its
mean µ is usually assumed to be zero. GP regression combines such a prior with training
data (x1,y1), . . . ,(xn,yn) where xi ∈ X , yi ∈ R with yi = f(xi)+ ϵi, ϵi ∼N (0,σ2

ϵ ). This
results in a posterior f|y which is another GP: f|y ∼ GP(µ|y,k|y). For any new input
x∗ ∈X , themeanµ|y(x∗) is the prediction and the posterior variance k|y(x∗,x∗) quantifies
the uncertainty. We refer to Rasmussen & Williams [2006] for more details. Defining an
appropriate kernel is one of the main challenges in GP modeling [Duvenaud, 2014]. For
example, to define a RBF kernel, one often requires a distance function on the input space,
which is not always available especially in non-Euclidean spaces.

4.2.1 GPs on Graphs
Let G = (V,E) be an unweighted graph where V = {1, . . . ,N0} is the set of nodes and
E is the set of N1 edges such that if nodes i, j are connected, then e = {i, j} ∈ E . We
can define real-valued functions on its node set f0 : V → R, collected into a vector
f0 = (f0(1), . . . ,f0(N0))⊤ ∈ RN0 . Denote the node-to-edge incidence matrix by B1 of
dimension N0×N1. Its entries are [B1]ie =−1 and [B1]je = 1, and zero otherwise, for
edge e = {i, j}. The graph Laplacian is then given by L0 = B1B⊤

1 , which is a positive
semi-definite linear operator on the space RN0 of node functions. It admits an eigende-
composition L0 = U0Λ0U⊤

0 where Λ0 collects its eigenvalues on the diagonal and U0
collects the orthogonal eigenvectors of L0 [Chung, 1997].

A GP on graphs f0 ∼ GP(0,K0) assumes f0 is a random function with zero mean and
a graph kernel K0 which encodes the covariance between pairs of nodes. To construct
justified graph GPs, Borovitskiy et al. [2021] extended the idea of deriving continuous GPs
from SPDEs1 [Lindgren et al., 2011; Whittle, 1963] to the domain of graphs. Specifically,
given the following SPDE on graphs with a Gaussian noise w0 ∼N (0,I)

Φ(L0)f0 = w0, with Φ(L0) =
(

2ν
κ2 I+L0

) ν
2
, (4.1)

where Φ(L0) = U0Φ(Λ0)U⊤
0 and Φ(·) applies to Λ0 element-wise. Its solution gives the

Matérn graph GP

f0 ∼GP
(

0,
(

2ν
κ2 I+L0

)−ν)
(4.2)

with positive parameters κ,ν. When scaled properly, the Matérn kernel gives the graph
diffusion kernel for ν→∞, which in turn relates to the random walk kernel by Kondor &
Lafferty [2002]. This SPDE framework can be extended to spatial-temporal data yielding
respective graph kernels [Nikitin et al., 2022].

1Stocahstic partial differential equations generalize partial differential equations via random force terms and
coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations.
For example, the stochastic heat equation may be written as ∂tx = ∆x + ξ where ∆ is the Laplacian (not to be
confused with the graph Laplacian) and ξ denotes space-time random noise.
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(a) SC2 (b) f1 (c) fG (d) fC (e) fH

Figure 4.1: (a) A SC2 where we shade (closed) triangles in green and denote reference orientations of edges/tri-
angles by arrows. (b) An edge function f1 with its divergence (purple values on nodes) and curl (orange values
in triangles). (c) Gradient flow fG = B⊤

1 f0 (f0 denoted in blue). (c-d) Hodge decomposition: (c) fG; (d) curl flow
fC = B2f2 (f2 denoted in red); and (e) harmonic flow fH . All numbers are rounded to two decimal places.

4.2.2 Edge Functions on Simplicial Complexes
Simplicial 2-complexes represent discrete geometry more expressively than graphs. They
are triples SC2 = (V,E ,T ) where V,E are the sets of nodes and edges, same as for graphs,
and T is the set of triangular faces (shortened as triangles) such that if {i, j},{j,k},{i,k}
form a closed triangle, then t = {i, j,k} ∈ T [Munkres, 2018]. An example is shown in
Fig. 4.1a. We assume a fixed orientation for each edge and each triangle by increasing labels
of their nodes. An oriented edge, denoted as e= [i, j], is an ordering of {i, j}. This is not a
directed edge allowing flow only from i to j, but rather an assignment of the sign of the
flow: from i to j is positive and the reverse is negative. Same goes for oriented triangles
denoted as t= [i, j,k].

Given a SC2, the functions, f1 : E → R, on its edges E are required to be alternating [Lim,
2020], meaning that, we have f1(ē) =−f1(e) if ē= [j, i] is oriented opposite to reference
e= [i, j]. For example, in Fig. 4.1b, f1(1,2) =−1.2 means there is 1.2 unit of flow from 2
to 1. This property keeps the flow unchanged with respect to the edge orientation. We
collect the edge functions on E into f1 = (f1(e1), . . . ,f1(eN1))⊤ ∈ RN1 , as in Fig. 4.1b,
which we also call as an edge flow.

We can also define alternating functions on triangles in T where f2(t̄) =−f2(t) if t̄ is an
odd permutation of reference t= [i, j,k] [Lim, 2020]. We collect them in f2 ∈ RN2 where
N2 = |T |. In topology, functions f0,f1,f2 are called 0-, 1-, 2-cochains, which are discrete
analogs of differential forms on manifolds [Grady & Polimeni, 2010]. This motivates the
use of subscripts 0,1,2. Here we can view these functions as vectors of data on nodes,
edges and triangles, respectively.

4.3 Edge Gaussian Processes
We now define GPs on edges of a SC2, specifically, f1 ∼GP(0,K1) with zero mean and
edge kernel K1. Throughout this work, we refer to them as edge GPs, and call graph GPs
in Section 4.2.1 as node GPs because they are both multivariate Gaussian but the former is
indexed by X = E and the latter by X = V . We start with deriving edge GPs from SPDEs
on edges as a natural extension of (4.1). Then, by introducing basic notions from discrete
calculus [Grady & Polimeni, 2010] and the Hodge decomposition theorem, we propose the
divergence-free and curl-free GPs, combining them into Hodge-compositional GPs.



4.3 Edge Gaussian Processes

4

101

4.3.1 Edge GPs from SPDEs on Edges
The derivation of graph GPs in (4.2) as solutions of graph SPDE in (4.1) motivates the
following SPDEs on edges, with edge Gaussian noise w1 ∼N (0,I),

Φ(L1)f1 = w1 (4.3)

where Φ(L1) = U1Φ(Λ1)U⊤
1 is a differential operator defined through L1. When we

consider the operators

Φ(L1) =
(2ν
κ2 I+L1

) ν
2
, and Φ(L1) = e

κ2
4 L1 , (4.4)

the solutions to (4.3) give two edge GPs

f1,Matérn ∼GP
(

0,
(2ν
κ2 I+L1

)−ν)
, and f1,diffusion ∼GP

(
0,e− κ2

2 L1
)
, (4.5)

which are the edgeMatérn and diffusionGPs, respectively. These edge GPs impose structured
prior covariance that encodes the dependence between edges. A related Hodge Laplacian
kernel (L⊤

1 L1)† can be obtained by setting Φ(L1) = L1, i.e., L1f1 = w1. This kernel was
used to penalize the smoothness of edge functions in Schaub et al. [2021]. The kernels of
(4.5) are more flexible though and allow encoding non-local edge-to-edge adjacency while
L1 instead encodes the local direct (one-hop) adjacency.

4.3.2 Div-free and Curl-free Edge GPs
The edge GPs in Section 4.3.1 define distributions over all edge functions. As opposed
to this, here we seek to define GPs on the classes of divergence-free and curl-free edge
functions. Recall the physics interpretations of incidence matrices in Chapter 2, which
carry the appropriate notions of discrete derivatives.

Discrete Derivatives. The gradient is a linear operator from the space of node functions
to that of edge functions. At edge e= [i, j], it is defined as

(gradf0)(e) = (B⊤
1 f0)e = f0(j)−f0(i), (4.6)

which computes the difference between the values of a function on adjacent nodes, resulting
in a flow on the connecting edge. We call fG = B⊤

1 f0 a gradient flow and f0 a node potential,
as shown in Fig. 4.1c.

The divergence, the adjoint of gradient, is a linear operator from the space of edge functions
to that of node functions. At node i, it is defined as

(divf1)(i) = (B1f1)i =−
∑

j∈N (i) f1(i, j) (4.7)

withN (i) the neighbors of i. Physically, it computes the net-flow of edge functions passing
through node i, i.e., the in-flow minus the out-flow, as shown in Fig. 4.1b. A divergence-free
flow has a zero net-flow everywhere.



4

102 4 Hodge-Compositional Edge Gaussian Processes

Lastly, the curl operator is a linear operator from the space of edge functions to that of
triangle functions. At triangle t= [i, j,k], it is defined as

(curlf1)(t) = (B⊤
2 f1)t = f1(i, j)+f1(j,k)−f1(i,k) (4.8)

which computes the net-circulation of edge functions along the edges of t, as a rotational
measure of f1, as shown in Fig. 4.1b. A curl-free flow has zero curl over each triangle. As in
calculus, we have the identity curlgrad = B⊤

2 B⊤
1 = 0, i.e., gradient flow is curl-free.

Analogous to their continuous vector field counterparts, div-free and curl-free edge func-
tions are ubiquitous, e.g., the electric currents and the exchange rates later in Section 4.4.1.
We refer to Grady & Polimeni [2010]; Lim [2020] for more examples. From this perspective,
we can view the graph Laplacian as L0 = divgrad = B1B⊤

1 , which is a graph-theoretic
analog of the Laplace-Beltrami operator ∆0 on manifolds. Also, the SPDE on graphs in (4.1)
is a discrete counterpart of the continuous one for scalar functions on manifolds. Moreover,
the Hodge Laplacian L1 can be viewed as L1 = graddiv +curl∗ curl = B⊤

1 B1 +B2B⊤
2 ,

which is a discrete analog of the vector Laplacian (or Helmholtzian) ∆1 for vector fields.

Recall the Hodge decomposition in Theorem 2.4 that unfolds an edge function. It states
that any edge function f1 is composed of three orthogonal parts: gradient, curl, harmonic
functions

f1 = fG + fH + fC (4.9)
where fG = B⊤

1 f0, being curl-free, is the gradient of some node function f0, and fC = B2f2,
being div-free, is the curl-adjoint of some triangle function f2. Lastly, fH is harmonic (both
div- and curl-free, L1fH = 0). This decomposition is illustrated in Fig. 4.1. It provides a
crucial tool for understanding edge functions, has been used in many applications as we
discussed above, and will allow us to improve the edge GPs in (4.5).

Furthermore, Proposition 2.5 shows that the eigenspace U1 of L1 can be reorganized in
terms of the three Hodge subspaces as

U1 = [UH UG UC ] (4.10)

where UH is the eigenvector matrix associated to zero eigenvalues ΛH = 0 of L1, UG

is associated to the nonzero eigenvalues ΛG of Ld, and UC is associated to the nonzero
eigenvalues ΛC of Lu. Moreover, they span the Hodge subspaces:

span(UH) = ker(L1), span(UG) = im(B⊤
1 ), span(UC) = im(B2), (4.11)

where span(•) denotes all possible linear combinations of columns of •.

Div-free, Curl-free Edge GPs. Given the eigendecomposition in (4.10), we can obtain
special classes of edge GPs by only using a certain type of eigenvectors when building
edge kernels of (4.5). Specifically, we define gradient and curl edge GPs as follows

fG ∼GP(0,KG), fC ∼GP(0,KC) (4.12)

where the gradient kernel and the curl kernel are

KG = UGΨG(ΛG)U⊤
G, KC = UCΨC(ΛC)U⊤

C . (4.13)
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We also define the harmonic GPs fH ∼ GP(0,KH) with the harmonic kernel KH =
UHΨH(ΛH)U⊤

H .
Proposition 4.1. Let fG and fC be the gradient and curl Gaussian processes, respectively.
Then, curl fG = 0 and div fC = 0 with probability one. Moreover, a harmonic Gaussian
process fH follows curl fH = 0 and div fH = 0 with probability one.

See proof in Appendix 4.A.2. These Hodge GPs provide more targeted priors for special
edge functions which are either div- or curl-free, capable of capturing these key properties.
In the case of Matérn kernels, we set

Ψ2(Λ2) = σ2
2

(2ν2
κ2
2

I+Λ2

)−ν2
, (4.14)

for2∈{H,G,C}, where σ2
2 controls the variancewe assign to the function in the subspace,

and ν2,κ2 are the regular Matérn parameters. Note that since ΛH = 0, we consider a
scaling function for KH as ΨH(0) = σ2

H . We illustrate such a Matérn kernel function in
Fig. 4.2 (left). These Hodge GPs can be derived from SPDEs on edges as well.
Proposition 4.2. Given a scaled curl white noise wC ∼N (0,WC) where WC

= σ2
CUCU⊤

C , consider the following SPDE on edges:

ΦC(Lu)fC = wC , (4.15)

with differential operators

ΦC(Lu) =
(2νC

κ2
C

I+Lu
) νC

2
, ΦC(Lu) = e

κ2
C
4 Lu . (4.16)

The respective solutions give the curl edge GPs with Matérn kernel in (4.14) and diffusion
kernel

ΨC(ΛC) = σ2
Ce

−
κ2

C
2 ΛC . (4.17)

Likewise, we can derive the gradient Matérn and diffusion GPs from the SPDEs as (4.15) but
with operators ΦG(Ld) and a scaled gradient white noise.

See proof in Appendix 4.A.3. We can draw the intuition of SPDE in (4.15) from the
continuous analogy. In the case of LufC = wC , the equation curl∗curlf1(x) = w1(x) is
a stochastic vector Laplace’s equation of a div-free (solenoidal) vector field, where w1(x)
the curl adjoint of some vector potential. In physics, this describes the static magnetic field
from a magnetic vector potential, as well as an incompressible fluid.

4.3.3 Hodge-compositional Edge GPs
Many edge functions of interest are indeed div- or curl -free, but not all. In this section
we combine the gradient, curl and harmonic GPs to define the Hodge-compositional (HC)
edge GPs.
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Figure 4.2: (Left)Matérn kernel functions Ψ2(λ) for 2 = {H,G,C} in (4.14) of gradient, curl and harmonic
GPs in the eigen-spectrum λ ranging in the min and man eigenvalues of L1. (Right)Matérn kernel function
Ψ(λ) of non-HC GP in (4.5).

Definition 4.3. A Hodge-compositional edge Gaussian process f1 ∼GP(0,K1) is a sum
of gradient, curl and harmonic GPs, i.e., f1 = fG + fC + fH where

f2 ∼GP(0,K2) with K2 = U2Ψ2(Λ2)U⊤
2 (4.18)

for 2 =H,G,C where their kernels do not share hyperparameters.

Given this definition, we can obtain the following properties of HC edge GPs.
Lemma 4.4. Let f1 ∼GP(0,K1) be an edge GP in Definition 4.3. Its realizations then give
all possible edge functions2. It further holds that K1 = KH +KG +KC , and the three Hodge
GPs are mutually independent, i.e., Cov(fG, fC) = Cov(fG, fH) = Cov(fC , fH) = 0.

See proof in Appendix 4.A.4. Naturally, we can construct a Matérn HC GP as the sum
of Matérn GPs in the three subspaces with their kernels given by (4.14), and likewise for
the diffusion HC GP by (4.17). Compared to the GPs in (4.5), referred to as non-HC GPs
henceforth, HC GPs are more flexible and expressive, having more degrees of freedom. We
discuss their practical advantages below.

Inductive GP Prior. The HC GP encodes the prior covariance Cov(f1(e),f1(e′)) between
edge functions over two edges e,e′ as follows: (i) the covariance is the sum of three covari-
ances Cov2 = Cov(f2(e),f2(e′)) for 2 =H,G,C ; (ii) each Cov2 encodes the covariance
between the corresponding Hodge parts of f1 without affecting the others; and (iii) no
covariance is imposed across different Hodge components, e.g., Cov(fG(e),fC(e′)) = 0.

In the spatial/edge domain, this is related to separating the down and up adjacencies
encoded in the SPDE operators Φ(·). From an eigen-spectrum perspective, the eigenvalues
Ψ2 of HC GP’s kernels associated to the three Hodge subspaces have individual parameters.
This enables capturing the different Hodge components of edge functions, as well as their
relevance during hyperparameter optimization, further allowing us to directly recover
the Hodge components in predictions, which we detail in Appendix 4.A.5. Non-HC GPs
instead require solving the Hodge decomposition in (4.9) (least squares problems) [Lim,
2Note that HC edge GPs do not represent all possible edge GPs. They are a particular GP family satisfying the
independence hypothesis on the three Hodge GPs. This, however, does not contradict with that their realizations
can represent all edge functions.
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Figure 4.3: Node (Top) and edge (Bottom) diffusion processes (started at one random location (Left), then two
intermediate states (Center) and harmonic state (Right)).

2020]. Another implication is that, unlike for non-HC GPs, we do not require specific
knowledge about the div or curl of the underlying function.

Comparison to non-HC GPs. When we view non-HC GPs in terms of the Hodge
decomposition, we notice that they put priors on the three Hodge GPs in a way that shares
hyperparameters. This enforces learning the same hyperparameters for different Hodge
components, resulting in a single function covering the entire edge spectrum, as shown in
Fig. 4.2 (right), as opposed to the three individual functions of the HC one.

This raises issues when separate learning, say, different lengthscales, is required for the
gradient and curl components. Non-HC GPs are strictly incapable of this practical need
when an eigenvalue is associated to both gradient and curl spaces. We also delve into this
in terms of edge Fourier features in the following.

Connection to Diffusion on Edges.

The HC diffusion kernel, given by K1 = exp(−(κ2
G
2 Ld + κ2

C
2 Lu)), when σ2

2s are one, is
the Green’s function for the edge diffusion of a function ϕ : [0,∞)×E → R

dϕ(t)
dt =−(µLd +γLu)ϕ(t), where µ,γ > 0 (4.19)

with the solution ϕ(t)|t=τ = e−(µτLd+γτLu)ϕ(0). This equation describes the diffusion
process on the edge space of SC2 that was used for network analysis [DeVille, 2021;
Muhammad & Egerstedt, 2006], often arising as the limit of randomwalks on edges [Schaub
et al., 2020]. The covariance K1 within this context encodes the proportion of edge flow
traveling from edge e to e′ via down and up edge adjacencies. Its vector field counterpart
was used for shape analysis [Sharp et al., 2019; Zobel et al., 2011]. Compared to the graph
(node) diffusion converging (t→∞) to the state that is constant on all nodes as long as
the graph is connected, the harmonic state of the edge diffusion can be non-constant, but
lies in the span of UH . We refer to Fig. 4.3 for visualizations of the two harmonic states.

Complexity. The kernels of HC edge GPs can be constructed in a scalable way by consid-
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ering the l largest eigenvalues with off-the-shelf eigen-solvers, e.g., Lanczos algorithm. We
refer to Appendix 4.A.8 for more details on the complexity of implementing HC GPs, as
well as sampling from them.

4.3.4 Edge Fourier Feature Perspective
From the edge eigen-feature perspective, any edge function can be viewed as a linear
combination of eigenvectors in U, that is,

f1 =
N1∑
i=1

f̃1,iui = U1f̃1 with f̃1 = U⊤f1 (4.20)

where f̃1 is known as the (edge) Fourier feature of f1 and f̃1,i is the i-th Fourier coefficient
at eigenvalue λi. These eigenvalues carry the notion of frequency [cf. Section 2.4.2]. Based
on the correspondence in Proposition 2.5 between the Hodge subspaces and the eigenbasis
U1 [cf. (4.10)], we futher have the edge Fourier representation as

f̃1 = U⊤
1 f1 = [f̃⊤

H , f̃⊤
G , f̃⊤

C ]⊤ with f̃H = U⊤
H f1, f̃G = U⊤

Gf1, f̃C = U⊤
Cf1. (4.21)

This provides as a spectral tool to understand the edge functions. The harmonic Fourier
feature f̃H measures the extent of harmonic Fourier basis UH in f , reflecting how harmonic
f1 is. The gradient Fourier feature f̃G measures the extent of gradient Fourier basis UG in
f1, reflecting how divergent f1 is, where each basis in UG has different total divergence.
The curl Fourier feature f̃C measures the extent of curl Fourier basis UC in f1, reflecting
how rotational f1 is, where each basis in UC has different total curl.
Corollary 4.5 (Fourier feature perspective of edge GPs). Let f1 ∼GP(0,K1) be an edge
Gaussian process with kernel diagonalizable by U1. Then, given the edge Fourier transform
f̃1 = U⊤

1 f1, its Fourier coefficients {f̃1,i}Ni=1 are independently distributed Gaussian variables

f̃1,i ∼N (0,u⊤
i K1ui), for i= 1, . . . ,N. (4.22)

This corollary indicates that an edge GP can be viewed as an affine transformation by U1
of a collection of independent Gaussian variables, f̃1 = [f̃1,1, . . . , f̃1,N1 ]⊤, which are the
Fourier coefficients of f . The prior distribution of certain Fourier coefficient is the prior
imposed on the corresponding divergent or rotational part of the function f . This allows
us to compare HC and non-HC edge GPs from the following perspective.
Proposition 4.6. Suppose the Hodge Laplacian L1 has eigenpairs (λ,uG) and (λ,uC), i.e.,
λ is associated to both gradient and curl subspaces. Let f1 ∼GP(0,K1) be an edge Gaussian
process. Denote the Fourier coefficients of f1 at λG and λC as f̃G and f̃C , respectively. Then,
a non-Hodge-compositional GP with K1 = Ψ(L1) imposes the same prior variance on f̃G

and f̃C , i.e.,
Var[f̃G] = Var[f̃C ] = Ψ(λ). (4.23)

Instead, a Hodge-compositional GP with K1 in (4.18) imposes different variances on two
coefficients

Var[f̃G] = ΨG(λ) and Var[f̃C ] = ΨC(λ). (4.24)
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This edge Fourier feature perspective directly shows that non-HC GPs impose the same
prior on two Fourier coefficients, which are however associated with two different Hodge
subspaces. This prohibits individual learning for the gradient and curl parts of edge
functions particularly associated to the same eigenvalue. Instead, HC edge GPs do not have
this limitation.

4.3.5 Node-Edge-Triangle GP Interactions
The gradient and curl components of edge functions are (co)derivatives of some node and
triangle functions, specifically, fG = B⊤

1 f0 and fC = B2f2 as in (4.9). Since the derivative
of a GP is also a GP, we can then construct a gradient GP from node GPs.

Corollary 4.7. Suppose a node function f0 is a GP f0 ∼GP(0,K0) with K0 = Ψ0(L0) =
U0Ψ0(Λ0)U⊤

0 . Then, its gradient is an edge GP fG∼GP(0,KG)whereKG = B⊤
1 K0B1 =

UGΨG(ΛG)U⊤
G with

ΨG(ΛG) = ΛGΨ0(ΛG). (4.25)

The proof follows from (i) derivatives preserving Gaussianity, and (ii) L0 and Ld having
the same nonzero eigenvalues. We can also obtain a curl edge GP from a GP on triangles
likewise. In turn, for an edge GP, its div is a node GP and its curl is a GP on triangles. We
refer to Appendix 4.A.9 for the proof and more details.

Exploiting this interaction between GPs on nodes, edges and triangles can lead to new
useful GPs, especially when functions on nodes, edges and triangles are intrinsically related
by physical laws. For example, in water networks, water flowrates in pipes are often related
to the gradient of hydraulic heads on nodes, as we will show in Section 4.4.3. This implies
that given an appropriate node GP, say, node Matérn GP in (4.2), a good edge GP prior can
be imposed as its gradient, as in Corollary 4.7. Furthermore, by leveraging this interaction,
we can construct HC edge GPs as follows.

Proposition 4.8. Let f1 be an edge function defined in (4.9) with harmonic component fH ,
node function f0 and triangle function f2. If we model f0 as a GP on nodes f0 ∼GP(0,K0),
model f2 as a GP on triangles f2 ∼GP(0,K2), and fH as a harmonic GP fH ∼GP(0,KH),
then we have GP f1 ∼GP(0,K1) with

K1 = KH +B⊤
1 K0B1 +B2K2B⊤

2 . (4.26)

See proof in Appendix 4.A.10. This alternative HC GP incorporates the Hodge theorem
prior in a way that directly relates the node potential and the triangle function. It can be
applicable when GP priors of node or triangle functions are more discernible. Similar ideas
for general cellular complexes are studied in the concurrent paper by Alain et al. [2024].

Continuous Counterparts. Edge functions can be viewed as discrete analogs of vector
fields. Berlinghieri et al. [2023] studied the models similar to our HC edge GPs in (4.26)
for Euclidean vector fields and the concurrent work by Robert-Nicoud et al. [2024] studies
similar models for vector fields on manifolds.
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Figure 4.4: (a-d) Interpolating a smaller forex market (for better visibility) with train ratio 50% where dashed
(solid) edges are used for training (testing). (e) Learned Matérn kernels in the spectrum of the Hodge Laplacian,
Ψ(λ) for non-HC GP and Ψ2(λ) with 2 = {H,G,C} for HC GPs.

4.4 Experiments
We apply HC GPs for edge-based inference tasks in three applications: foreign currency
exchange (forex), ocean current and water supply networks (WSNs). We showcase the
structured prior on edges in these tasks by comparing them to baselines: (i) Euclidean GPs
with RBF and Matérn kernels, and (ii) Node GPs on the line-graph—built by exchanging
the nodes with edges in the original graph [Godsil & Royle, 2001]. To highlight the prior of
Hodge decomposition, we also compare with non-HC GPs. For each of them, we consider
Matérn and diffusion kernels. We perform GP regression with Gaussian likelihood for
model fitting using the GPyTorch framework [Gardner et al., 2018]. We use the root
mean squared error (RMSE) to evaluate the predictive mean and the negative log predictive
density (NLPD) for prediction uncertainty. We refer to Appendix 4.B for full experimental
details.

4.4.1 Foreign Currency Exchange
A forex market can be modeled as a network where nodes represent currencies and edges
the exchangeable pairs [Jiang et al., 2011]. Forex rates in a fair market ideally satisfy the
arbitrage-free condition: for any currencies i, j,k, we have ri/jrj/k = ri/k with ri/j the
rate between i and j. That is, the exchange path i→ j→ k provides no gain or loss over a
direct path i→ k. If we model forex rates as edge flows f1(i, j) = log(ri/j), this condition
can be translated into that f1 is a gradient flow, being curl-free, i.e., f1(i, j) +f1(j,k)−
f1(i,k) = 0. Here we consider real-world forex data on 2018/10/05 with 25 most traded
currencies forming 210 exchangeable pairs and 710 triangles, formed by any three pairwise
exchangeable currencies [Jia et al., 2019; Oanda, 2018]. We randomly sample 20% of edges
for training and test on the rest.

From Table 4.1, we see that HC GPs achieve significantly lower RMSEs with high certainty
(small NLPDs), as visualized in Fig. 4.4. This shows their ability to automatically capture
the curl-free nature of the forex rates. As shown in Fig. 4.4e, the HC Matérn GP learns
that harmonic and curl components should vanish. In contrast, the other three give poor
predictions, due to: (i) Euclidean GPs being oblivious of the structure of edge functions; (ii)
line-graph GPs imposing inappropriate structure through node priors; and (iii) non-HC
GPs being unable to induce the curl-free prior without removing the gradient. This results
from sharing parameters in their kernels for different Hodge components. As shown in
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Table 4.1: Forex rates inference results.

Method RMSE NLPD
Diffusion Matérn Diffusion Matérn

Euclidean 2.17±0.13 2.19±0.12 2.12±0.07 2.20±0.18
Line-Graph 2.43±0.07 2.46±0.07 2.28±0.04 2.32±0.03
Non-HC 2.48±0.07 2.47±0.08 2.36±0.07 2.34±0.04
HC 0.08±0.12 0.06±0.12 −3.52±0.02 −3.52±0.02

Fig. 4.4e, the non-HC Matérn GP learns a nonzero kernel in the whole spectrum, unable to
remove the non-arbitrage-free part.

4.4.2 Ocean Current Analysis
We consider the edge-based ocean current learning following the setup in Chen et al.
[2021c]. The ocean current velocity fields were converted using the linear integration
approximation to edge flows within a SC2 whose nodes are 1500 buoys sampled from
North Pacific ocean drifter records in 2010-2019 [Lumpkin & Centurioni, 2019]. We apply
both non-HC and HC GPs to predict the converted edge flows. Given the large number of
edges (∼20k), we consider a truncated approximation of kernels with eigenpairs associated
with the 500 largest eigenvalues [Knyazev, 2001]. We randomly sample 20% of edges for
training and test on the rest.

From Table 4.2, we see that HC and non-HC GPs exhibit similar performance. This
arises from the comparable behavior of the gradient and curl components, as depicted in
Fig. 4.5f, where the learned gradient and curl diffusion kernels display close patterns. In
contrast, Euclidean and line-graph GPs give poor predictions emphasizing the importance
of structured edge priors.
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Figure 4.5: (a-b) Ground truth and interpolated ocean current in the vector field domain. (c) Standard deviation
approximated by sampling 50 edge flows from the predictive posterior distribution and converted to the
vector field domain. (d-e) The curl-free and div-free components directly obtained from the learned kernels. (f)
Learned diffusion kernels ΨG(λ) and ΨC(λ) of the HC GP in the spectrum of the Hodge Laplacian.
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Table 4.2: Ocean current inference results.

Method RMSE NLPD
Diffusion Matérn Diffusion Matérn

Euclidean 1.00±0.01 1.00±0.00 1.42±0.01 1.42±0.10
Line-Graph 0.99±0.00 0.99±0.00 1.41±0.00 1.41±0.00
Non-HC 0.35±0.00 0.35±0.00 0.33±0.00 0.36±0.03
HC 0.34±0.00 0.35±0.00 0.33±0.01 0.37±0.04

We further convert the predicted edge flows into the vector field domain, as shown in
Fig. 4.5b, based on Chen et al. [2021c]. We see that the predictions capture the pattern
of the original velocity field. We approximate the predicted velocity field uncertainty by
computing the average ℓ2 distance per location from 50 posterior samples to the mean
in the vector field domain. As shown in Fig. 4.5c, the standard deviation estimated this
way is small in most locations except for a few exceptions (small islands at the bottom left)
where the original field is more discontinuous. Moreover, since HC GPs enable the direct
recovery of gradient and curl components, we show their corresponding vector fields in
Figs. 4.5d and 4.5e, giving better insights into how ocean currents behave, of particular
interest in oceanography. For example, we can observe the well-known North Pacific gyres
including the North Equatorial, Kuroshio and Alaska currents in Fig. 4.5e.

4.4.3 Water Supply Networks
Network-based methods have been used inWSNs where tanks or reservoirs are represented
by nodes, and pipes by edges [Zhou et al., 2022]. By modeling the hydraulic heads as node
functions f0 and the water flowrates as edge functions f1, the commonly used empirical
equation connecting the two reads asB⊤

1 f0 = f̄1 := diag(r)f1.852
1 where re is the resistance

of pipe e and the exponentiation is applied element-wise [Dini & Tabesh, 2014].

We consider the Zhi Jiang WSN with 114 tanks (including one source) and 164 pipes
(without triangles, Dandy [2016]) and simulate a scenario based on Klise et al. [2017]. We
perform joint state estimation of heads f0 and the adjusted flowrates f̄1, by modeling them
as GPs on nodes and edges, respectively. To compare HC and non-HC edge GPs, for a node
GP with kernel K0, we consider the HC GP as its gradient, as discussed in Corollary 4.7.
For the non-HC one, we consider a kernel K1 of the same type as K0. We randomly sample
50% of nodes and edges for training and test on the rest.

From Table 4.3, we see that while the mean predictions of heads remain similar whether
we use HC or non-HC edge GPs, the former perform better for edge flows, particularly
in the pipes around the source, as shown in Figs. 4.6b and 4.6c. Moreover, HC GPs have
better prediction uncertainty with smaller average NLPDs for both heads and flowrates,
as illustrated in Figs. 4.6d and 4.6e. This is because HC GPs that we use share parameters
with node GPs, helping to calibrate the uncertainty of head predictions. They also capture
the physical prior of the pipe equation that assumes flowrates are a gradient flow. As
shown in Fig. 4.6f, the HC Matérn GP learns a kernel with a trivial harmonic prior and
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Figure 4.6: (a-e) Posterior mean and standard deviation (std) based on the Matérn node GPs, and the HC and
non-HC Matérn edge GPs. Squared (Circled) nodes represent the node samples for training (testing). Dashed
(solid) edges denote the edge samples for training (testing). (f) The learned edge GP kernels in the spectrum,
Ψ(λ) for non-HC GP and ΨH(0),Ψ(λ) for HC GPs.

Table 4.3: WSN inference results.

Method Node Heads Edge Flowrates
RMSE NLPD RMSE NLPD

Diffusion, non-HC 0.16±0.05 0.72±2.06 0.32±0.05 0.97±1.80
Matérn, non-HC 0.16±0.04 0.71±2.39 0.26±0.05 0.10±0.13
Diffusion, HC 0.15±0.04 −0.47±0.14 0.22±0.03 −0.20±0.13
Matérn, HC 0.15±0.04 −0.25±0.48 0.23±0.03 −0.45±0.49

a nonzero gradient prior in small eigenvalues, reflecting the gradient nature of the pipe
flowrates. Note that due to the randomness of training samples, the WSN, having small
edge connectivity, may become disconnected, causing the significant variance in NLPDs.

4.5 Conclusion
We introduced Hodge-compositional (HC) Gaussian processes (GPs) for modeling functions
on the edges of simplicial 2-complexes. These HC GPs are constructed by combining three
individual GPs, each designed to capture the gradient, curl and harmonic components of
edge functions through Hodge decomposition. This allows them to independently learn
each component, providing increased expressiveness and interpretability when compared to
directly extending edge GPs from graph GPs. They can also be constructed by leveraging the
physical interactions between functions on nodes, edges and triangles. We demonstrated
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their practical potential in learning real-world flow data. Finally, the HC GPs can be
extended to higher-order simplicial complexes, and we focused on the edge flow modeling
because of their relevance in real-world applications.
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Appendix

4.A Edge Gaussian Processes
Here, we provide the additional details on Section 4.3 and the missing proofs.

4.A.1 Derivation of Edge GPs from SPDEs on Edges
Here we derive the edge Matérn and diffusion GPs in (4.5) from the two SPDEs in (4.3).
Proposition 4.9. Given the SPDEwith a general differential operatorΦ(L1) = U1Φ(Λ1)U⊤

1
and the stochastic Gaussian noise process w1 ∼N (0,I)

Φ(L1)f1 = w1, (4.27)

its solution is an edge GP

f1 ∼GP(0,(Φ⊤(L1)Φ(L1))†) (4.28)

Proof. By writing out its solution

f1 = Φ†(L1)w1, (4.29)

which is a random process, we can find its covariance as

Cov[f1] = Φ†(L1)Cov[w1](Φ†(L1))⊤ = (Φ⊤(L1)Φ(L1))† (4.30)

□

Corollary 4.10. Matérn and diffusion edge kernels in (4.5) given as follows

f1 ∼GP
(

0,
(2ν
κ2 I+L1

)−ν)
, f1 ∼GP

(
0,e− κ2

2 L1
)

(4.31)

are the solutions of the following two SPDEs, respectively.(2ν
κ2 I+L1

) ν
2 f1 = w1, e

κ2
4 L1f1 = w1. (4.32)

Proof. By following the procedure in Proposition 4.9, the proof completes. □
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4.A.2 Samples of Gradient and Curl Edge GPs
Here, we discuss the div and curl properties of samples of gradient and curl GPs in (4.12),
which completes the proof of Proposition 4.1.
Proposition 4.11. Consider the gradient and curl GPs

fG ∼GP(0,KG), fC ∼GP(0,KC) (4.33)

where the gradient kernel and the curl kernel are

KG = UGΨG(ΛG)U⊤
G, KC = UCΨC(ΛC)U⊤

C . (4.34)

Their prior samples are, respectively, curl-free and div-free.

Proof. We focus on the case of gradient GPs. First, we can decompose the gradient kernel
in terms of U1 = [UH UG UC ] as

KG = U1

0
ΨG(ΛG)

0

U⊤
1 . (4.35)

From a vector v = (v1, . . . ,vN1)⊤ of variables following independent normal distribution,
we can draw a random sample of gradient function as

fG = U1diag([0,Ψ
1
2
G(ΛG),0])v (4.36)

where diag([a,b,c]) is the diagonal matrix with (a,b,c)⊤ on its diagonal.

Therefore, their curls are

curl fG = B⊤
2 U1diag([0,Ψ

1
2
G(ΛG),0]) = B⊤

2 UGΨ
1
2
G(ΛG) = 0. (4.37)

Likewise, we can show the samples of a curl GP are div-free.
Remark 4.12. An alternative proof can follow by studying the curl of the gradient GP which
is another GP on triangles as given later by Proposition 4.16. The kernel B⊤

2 KGB2 is
zero, due to the orthogonality B⊤

2 UG = 0. Thus, the curl of a gradient GP is a zero GP on
triangles, as well as its samples. Similarly, one can show the div of a curl GP is a zero GP
on nodes, thus, its samples are zero.

□

4.A.3 Derivation of Gradient and Curl GPs from SPDEs
Here we provide proofs for Proposition 4.2, deriving Matérn and diffusion gradient/curl
GPs from their SPDE representations.
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Proposition 4.13. Given a scaled curl white noisewC ∼N (0,WC)whereWC =σ2
CUCU⊤

C ,
consider the following SPDE on edges:

ΦC(Lu)fC = wC , (4.38)

with differential operators

ΦC(Lu) =
(2νC

κ2
C

I+Lu
) νC

2
, ΦC(Lu) = e

κ2
C
4 Lu . (4.39)

The respective solutions give the curl edge GPs with Matérn kernel and diffusion kernel

fC ∼GP
(

0,σ2
CUC

(2νC

κ2
C

I+Lu
)−νC

U⊤
C

)
, fC ∼GP

(
0,σ2

CUCe
−

κ2
C
2 U⊤

C

)
. (4.40)

Proof. First, consider the Matérn curl GP case. The corresponding SPDE has the form(2νC

κ2
C

I+Lu
) νC

2 fC = wC , (4.41)

with a solution fC = Φ†
C(Lu)wC .

Given the scaled curl Gaussian noise process wC ∼G(0,WC) with WC = σ2
CUCU⊤

C , the
solution fC is an edge GP following fC ∼GP(0,Cov[fC ]) with the covariance of solution
fC as

Cov[fC ] =
(2νC

κ2
C

I+Lu
)− νC

2 WC

(2νC

κ2
C

I+Lu
)− νC

2
. (4.42)

Note that we have

WC =
(
UH UG UC

)0
0

σ2
CI

(UH UG UC

)⊤
. (4.43)

Moreover, Lu can be decomposed by U1 as follows

Lu =
(
UH UG UC

)0
0

ΛC

(UH UG UC

)⊤
, (4.44)

which follows that(2νC

κ2
C

I+Lu
)− νC

2 =
(
UH UG UC

)

(

2νC

κ2
C

I
)− νC

2

(
2νC

κ2
C

I
)− νC

2

(
2νC

κ2
C

I+ΛC

)− νC
2


(
UH UG UC

)⊤
.

(4.45)
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By plugging (4.43) and (4.45) into (4.42), we can then express the covariance as

Cov[fC ] =
(
UH UG UC

)0
0

σ2
C

(
2νC

κ2
C

I+ΛC

)−νC

(UH UG UC

)⊤

= UCσ
2
C

(2νC

κ2
C

I+ΛC

)−νC
U⊤

C

(4.46)
which returns the Matérn curl GP fC ∼GP

(
0,σ2

CUC

(
2νC

κ2
C

I+Lu
)−νC

U⊤
C

)
.

Second, consider the following SPDE

e
κ2

C
4 LufC = wC . (4.47)

Following the same procedure as above, we have its solution as

fC ∼GP
(

0,σ2
CUCe

−
κ2

C
2 U⊤

C

)
(4.48)

which is the diffusion curl GP. □

Proposition 4.14. Given a scaled gradient white noise wG ∼ N (0,WG) where WG =
σ2

GUGU⊤
G, consider the following SPDE on edges:

ΦG(Ld)fG = wG, (4.49)

with differential operators

ΦG(Ld) =
(2νG

κ2
G

I+Ld

) νG
2
, ΦG(Ld) = e

κ2
G
4 Ld . (4.50)

The respective solutions give the curl edge GPs with Matérn kernel and diffusion kernel

fG ∼GP
(

0,σ2
GUG

(2νG

κ2
G

I+Ld

)−νG
U⊤

G

)
fG ∼GP

(
0,σ2

GUGe
−

κ2
G
2 U⊤

G

)
. (4.51)

Proof. The proof follows Proposition 4.13 likewise. □

4.A.4 Proof of Properties of HC Edge GPs
Here we provide proofs for Lemma 4.4, which directly follow from Definition 4.3.

Proof. For an edge GP f1 with covariance kernel K1, due to the fact that the HC edge kernel
K1 is built using all the orthonormal basis of the edge function space U1, its realizations
give all possible edge functions. This is analogous to Karhunen-Loève theorem for GPs
with Mercer kernels. For the second point that K1 = KH +KG +KC and the three Hodge
GPs mutually independent, this results from the construction of f1 and the orthogonality
of the three Hodge GPs. □
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4.A.5 Posterior Distributions of Hodge Components
Herewe discuss the posterior distribution of the threeHodge components from the posterior
prediction of the edge function. As the construction of our HC edge GPs is essentially a
sum of three independent functions, we can follow Duvenaud [2014, Section 2.4] modeling
the sums of Euclidean functions. Denote f1(x) and f1(x∗) the function values, respectively,
at training locations x = [x1, . . . ,xn]⊤ and query locations x∗ = [x∗

1, . . . ,x
∗
n]⊤. We first

write down the joint prior distribution over the three Hodge components and the edge
function.

fH(x)
fH(x∗)
fG(x)
fG(x∗)
fC(x)
fC(x∗)
f1(x)
f1(x∗)


∼N


0,



KH K∗
H KH K∗

H

K∗⊤
H K∗∗

H K∗
H K∗∗

H
KG K∗

G KG K∗
G

K∗⊤
G K∗∗

G K∗
G K∗∗

G
KC K∗

C KC K∗
C

K∗⊤
C K∗∗

C K∗
C K∗∗

C

KH K∗⊤
H KG K∗⊤

G KC K∗⊤
C K1 K∗

1
K∗⊤

H K∗∗
H K∗⊤

G K∗∗
G K∗⊤

C K∗∗
C K∗⊤

1 K∗∗
1




(4.52)

where we represent the kernel matrices by K1 = k1(x,x),K∗
1 = k1(x,x∗) and K∗∗

1 =
k1(x∗,x∗), and likewise for the other kernel matrices. Given this joint distribution, we
can obtain the posterior distributions of the three Hodge components as follows

fH(x∗)|f1(x)∼N
(

K∗⊤
H K−1

1 f1(x),K∗∗
H −K∗⊤

H K−1
1 K∗

H

)
(4.53a)

fG(x∗)|f1(x)∼N
(

K∗⊤
G K−1

1 f1(x),K∗∗
G −K∗⊤

G K−1
1 K∗

G

)
(4.53b)

fC(x∗)|f1(x)∼N
(

K∗⊤
C K−1

1 f1(x),K∗∗
C −K∗⊤

C K−1
1 K∗

C

)
(4.53c)

From these posterior distributions, we can directly obtain the means and the uncertainties
of the Hodge components of the predicted edge function.

4.A.6 Edge Fourier Feature Perspective
Proof of Corollary 4.5

Proof. Using the affine transformation preserving Gaussian, we have

f̃1 ∼GP(0,U⊤
1 K1U1). (4.54)

Since the kernel K1 can be diagonalized by U1, the kernel U⊤
1 K1U1 is a diagonal matrix,

implying the independence between variables in f̃1. Thus, a variable f̃1,i follows normal
distribution N (0,u⊤

i K1ui). □

Proof of Proposition 4.6
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Proof. For a non-HC edge GP with kernel Ψ(L1), its Fourier coefficients f̃G and f̃C at a
common λ follows the normal distribution with a variance Ψ(λ), which follows from the
nature of kernel function Ψ mapping each λ to exactly one value Ψ(λ). However, for a HC
edge GP, we have

f̃G ∼N (0,u⊤
GK1uG), f̃C ∼N (0,u⊤

CK1uC). (4.55)

Using Definition 4.3 [cf. (4.18)], we have u⊤
GK1uG = ΨG(λ) and u⊤

CK1uC = ΨC(λ),
which are two different values, arising from the individually parametrized kernels KG and
KC . □

4.A.7 Diffusion on Edges
Here we provide the details on the connection of diffusion HC edge GPs to edge diffusion
equations, as well as an illustration of diffusion process on edges. Consider the diffusion
equation on the edge space

dϕ(t)
dt =−(µLd +γLu)ϕ(t) (4.56)

where µ,γ > 0. Given an initial value ϕ(0), we obtain a solution

ϕ|t=τ = e−(µτLd+γτLu)ϕ(0), (4.57)

When σ2
G = σ2

C = σ2
H = 1, the diffusion kernel can be written as

K1 = e−(
κ2

G
2 Ld+

κ2
C
2 Lu) (4.58)

which is the Green’s function of above diffusion equation. In Fig. 4.3, we illustrate the
diffusion processes on nodes and on edges, started at a random location. When the graph is
connected, the node diffusion converges to the harmonic state where all nodes are constant.
Instead, the harmonic state of the edge diffusion gives an edge flow which is div- and
curl-free, cycling around the 1-dimensional “hole” of the SC2 [Munkres, 2018].

4.A.8 Complexity of Edge GPs
Here we discuss their complexity when training, e.g., in Gaussian process regression, and
the complexity of sampling from them. Note that the complexity of graph GPs naturally
apply to edge GPs.

Complexity when Training The Matérn and diffusion kernels can be trained in a
scalable way. Due to their decreasing eigenvalues, we can consider the l largest eigenvalues
of the kernel matrices with off-the-shelf eigen-solvers, e.g., Lanczos algorithm. The recent
work on Krylov subspace methods to accelerate graph kernels by Erb [2023] can be extended
to edge kernels. Moreover, other computational techniques applicable for graph GPs in
Borovitskiy et al. [2021, Section 3.1] can be adopted as well.
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Complexity when Sampling from Edge GPs Given an edge GP, as well as the eigen-
pairs for constructing the edge kernel, we can follow the procedure in Appendix 4.A.2 to
sample an edge function. That is, from a vector v = (v1, . . . ,vN1)⊤ of variables following
independent normal distribution, a sample of the edge function can be given by

f1 = [UH UG UC ]diag([Ψ
1
2
H(ΛH),Ψ

1
2
G(ΛG),Ψ

1
2
C(ΛC)])v (4.59)

which has a complexity of O(N2
1 ) (matrix-vector multiplication). Furthermore, the discus-

sion on improving sampling efficiency in graph GP models by Nikitin et al. [2022, Section
4.7] naturally applies to our proposed edge GPs as well.

4.A.9 Interaction between Node, Edge and Triangle GPs
Here we provide the proof for Corollary 4.7, showing the gradient of a node GP is an edge
GP.

Proof. Given a node GP f0 ∼ GP(0,K0), using the derivative of a GP is also a GP, its
gradient fG = B⊤

1 f0 is an edge GP whose kernel can be found as

KG = Cov[fG] = B⊤
1 Cov[f0]B1 = B⊤

1 K0B1. (4.60)

By definition, L0 = B1B⊤
1 and Ld = B⊤

1 B1 are isospectral, having the same nonzero
eigenvalues. Furthermore, using K0 = Ψ0(L0), we can write above covariance as

KG = B⊤
1 Ψ(B1B⊤

1 )B1 = B⊤
1 B1Ψ0(B⊤

1 B1) = LdΨ0(Ld) (4.61)

where the second equality can be shown by using the definition of analytic functions of
matrix [Higham, 2008, Corollary 1.34]. Furthermore, relying on the eigendecomposition

Ld =
(
UH UG UC

)0
ΛG

0

(UH UG UC

)⊤
, (4.62)

we can obtain
KG = UGΛGΨ0(Λ)U⊤

G, (4.63)

which gives the gradient kernel function ΨG(ΛG) = ΛGΨ0(ΛG). □

In the following we provide the respective corollaries for other derivative operations
of interest, where the proofs can directly follow from the fact that derivatives preserve
Gaussianity.
Corollary 4.15 (Curl of a triangle GP). Suppose a triangle function f2 is a GP f2∼GP(0,K2)
with K2 = Ψ2(L2) = U2Ψ2(Λ2)U⊤

2 given the eigendecomposition L2 = U2Λ2
U⊤

2 . Then, its curl is an edge GP fC ∼GP(0,KC) where KC = UCΨC(ΛC)U⊤
C with

ΨC(ΛC) = ΛCΨ2(ΛC). (4.64)
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Proposition 4.16 (Div and Curl of edge GPs). Let f1 ∼GP(0,K) be a Hodge-compositional
edge Gaussian process in Definition 4.3. Then, its divergence and curl are Gaussian processes
on nodes and triangles, respectively, as follows

B1f ∼GP(0,B1KGB⊤
1 ), B⊤

2 f ∼GP(0,B⊤
2 KCB2). (4.65)

Remark 4.17. These interactions between GPs on nodes, edges and triangles provide us
alternative ways to construct gradient and curl edge GPs [cf. Corollaries 4.7 and 4.15], as
well as construct appropriate node GPs and triangle GPs. They are more applicable when
the underlying physical relationships exist between the corresponding functions and the
GP priors on the original simplices are easier to construct.

4.A.10 Alternative Hodge-compositional Edge GPs
Here we provide the proof for Proposition 4.8 giving an alternative way to build HC edge
GPs.

Proof. From the Hodge decomposition, we can write an edge function as

f1 = fH +B⊤
1 f0 +B2f2. (4.66)

where f0 and f2 are some node and triangle functions. Then, the proof can be completed
by using the results from Corollaries 4.7 and 4.15. □

4.A.11 Alternative HC Edge GPs from SPDEs on Edges
While gradient and curl edge GPs in Definition 4.3 can be linked to their SPDEs as dis-
cussed by Proposition 4.2, we can also obtain the alternatively constructed counterparts in
Corollaries 4.7 and 4.15 from SPDEs. Again, we consider the Matérn family.
Corollary 4.18. Suppose a node function f0 is a graph (node) Matérn GP f0 ∼GP(0,K0)
with

K0 = Ψ0(L0) =
(2ν0
κ2

0
I+L0

)−ν0
. (4.67)

Then, Corollary 4.7 gives us its gradient as a gradient edge GP fG ∼GP(0,KG) with

KG = Ld

(2ν0
κ2

0
I+Ld

)−ν0
. (4.68)

Furthermore, the gradient GP fG is the solution of the following SPDE

(2ν0
κ2

0
I+Ld

) ν0
2 fG = B⊤

1 w0 (4.69)

where w0 is a standard Gaussian noise on nodes following f0 ∼N (0,I).
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Proof. First, we can solve the SPDE with the following solution

fG =
(2ν0
κ2

0
I+Ld

)− ν0
2 B⊤

1 w0 = B⊤
1

(2ν0
κ2

0
I+L0

)− ν0
2 w0 (4.70)

where the second equality follows from the definition of L0 and Ld. Given that w0 is a
GP, so is fG and we can study its covariance as

Cov[fG] = B⊤
1

(2ν0
κ2

0
I+L0

)− ν0
2 Cov[w0]

(2ν0
κ2

0
I+L0

)− ν0
2 B1

= B⊤
1

(2ν0
κ2

0
I+L0

)−ν0
B1

= Ld

(2ν0
κ2

0
I+Ld

)−ν0

(4.71)

which completes the proof. □

For completeness, we give the corollary relating the curl Matérn edge GP obtained from
some triangle GP to its SPDE representation.
Corollary 4.19. Suppose a triangle function f2 is a triangle Matérn GP f2 ∼ GP(0,K2)
with

K2 = Ψ2(L2) =
(2ν2
κ2

2
I+L2

)−ν2
. (4.72)

Then, Corollary 4.15 gives us its curl adjoint as a curl edge GP fC ∼GP(0,KC) with

KC = Lu
(2ν2
κ2

2
I+Lu

)−ν2
. (4.73)

Furthermore, the curl GP fC is the solution of the following SPDE(2ν2
κ2

2
I+Lu

) ν2
2 fC = B2w2 (4.74)

where w2 is a standard Gaussian noise on triangles following f2 ∼N (0,I).

Proof. The proof can follow the same procedure as above for Corollary 4.18. □

4.B Experiments
Here we provide additional details on the three experiments presented in the main text.

Experimental Setup In our three experiments we consider the regression tasks and
implement GP regression using the GPyTorch library [Gardner et al., 2018]. We optimize
the marginal log likelihood loss for 1000 iterations with the ADAM optimizer where the
learning rate is set to the default value of 0.001. We run each experiment 10 times with
hyperparameters randomly initialized. We report evaluation metrics averaged over 10
experiments and the respective standard deviations. All experiments are run on a NVIDIA
GeForce RTX 3080 GPU with 10GB of memory.
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Figure 4.7: (a) Forex prediction RMSEs of different GPs using Matérn kernels with respect to training ratios. (b)
Forex prediction RMSEs of HC GPs using different edge kernels with respect to training ratios. (c) Learned HC
and non-HC Matérn kernels in the spectrum for a training ratio of 0.2.

Line-graph Construction Given the incidence matrix B1 of the original graph, the
adjacency matrix and the corresponding graph Laplacian of the line-graph can be found as
Alg := |B⊤

1 B1−2I| and Llg = diag(Alg1)−Alg .

4.B.1 Additional Details for the Forex Experiment
In the forex experiment, we obtain the data from Foreign Exchange Data by Oanda Cor-
poration3. The data was collected at 2018/20/05 17:00 UTC by Jia et al. [2019]. It includes
the pairwise exchange rates between the 25 most traded currencies, which form 210 ex-
changeable pairs. With them as nodes and edges, we then construct an unweighted SC2 by
including the triangles formed by any three pairwise exchangeable currencies. For an edge
{i, j} connecting currencies i, j, we assign its orientation based on an alphabetical order of
their currency names, and likewise for a triangle. For each exchangeable pair, we consider
the underlying edge flow as f1(i, j) = logri/j , translating the arbitrage-free condition to
curl-free condition, where ri/j is the midpoint between ask and bid prices. Fig. 4.7 shows
the prediction RMSEs using different GP models with respect to training ratios from 0.1 to
0.5 with a step 0.05, as well as the learned Matérn kernels.

For visualizing the predictions using different models, we consider a smaller market for
better visibility where we first randomly removed seven currencies then half of the ex-
changeable pairs, resulting 18 currencies and 77 pairs, as shown in Fig. 4.8.

4.B.2 Additional Details for Ocean Current Analysis
In the second experiment, we consider the ocean drifter data, also known as Global La-
grangian Drifter Data, which was collected by NOAA Atlantic Oceanographic and Mete-
orological Laboratory4. Each point in the dataset is a buoy at a specific time, with buoy
ID, location (in latitude and longitude), date/time, velocity and water temperature. We
consider the buoys that were in the North Pacific ocean dated from 2010 to 2019 with a size
of around three million. The dataset itself is a 3D point cloud after converting the location
to the earth-centered, earth-fixed (ECEF) coordinate system. We follow the procedure in

3https://www.oanda.com/.
4http://www.aoml.noaa.gov/envids/gld/.

https://www.oanda.com/
http://www.aoml.noaa.gov/envids/gld/
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Figure 4.8: (a-e): Visualization of forex rates predictions in a smaller market. (f): Prior variance of the learned
HC Matérn GP. Note that (b-d) and (f) are the same as the ones in the main content [cf. Fig. 4.4]. Here we
show them with a better resolution.

Chen & Meila [2021] to first sample 1,500 buoys furthest from each other, then construct a
weighted SC2 as a Vietoris-Rips (VR) complex withN1 around 20k andN2 around 90k. We
then convert the velocity field into flows on the edges of SC2 by using the linear integration
approximation [Chen et al., 2021c]. We randomly sample 20% of the edges for training and
test on the rest. To efficiently construct the edge kernels, we use eigensolver in Knyazev
[2001], implemented using the megaman library [McQueen et al., 2016], to compute the
eigenpairs associated to the 500 largest eigenvalues. We evaluate the prediction mean and
uncertainty in the edge flow domain, reported in Table 4.4. Furthermore, we obtain the
gradient and curl components of the edge flow of the prediction as in Appendix 4.A.5. We
visualize the predictions in the edge flow domain in Fig. 4.9. We see that both HC and
non-HC edge diffusion GPs give close performance and they capture the general pattern of
the edge flow. Moreover, the standard deviation is small in most of the locations except
few locations (small islands around the lower left corner) where the edge flows (velocity
fields) exhibit more discontinuities due to the boundary.

We further convert the edge flows back into vector fields, as shown in Fig. 4.10. We refer
to Chen et al. [2021c] for this procedure. We also approximate the standard deviation of
the velocity field prediction by sampling 50 edge flows from the posterior distribution and
converting them to the vector field domain, followed by computing the average ℓ2 distance
between the samples and the mean per location, as shown in Fig. 4.10d.

4.B.3 Additional Details for Water Supply Networks
We obtain the Zhi Jiang WSN from Dandy [2016] which contains 114 nodes (113 tanks
and 1 source reservoir) and 164 edges (water pipes), no triangles considered. We build
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(d) Predicted ocean current, non-HC diffusion
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(e) Original gradient ocean current
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(f) Original curl ocean current
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(g) Predicted gradient flow
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(h) Predicted curl flow

Figure 4.9: (a-h) Results for ocean current prediction with 20% training ratio in the edge flow domain. Note
that we highlight the edge flow values on the middle points of the edges.
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(d) Standard deviation approximated using 50 samples
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Figure 4.10: (a-h) Results for ocean current prediction with 20% training ratio in the vector field domain. Note
that (a-b) and (g-h) are the same as in Fig. 4.5. We show them here for reader’s convenience.
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Table 4.4: Ocean current inference results.

Method RMSE NLPD
Diffusion Matérn Hodge Laplacian Diffusion Matérn Hodge Laplacian

Euclidean 1.00±0.01 1.00±0.00 — 1.42±0.01 1.42±0.10 —
Line-Graph 0.99±0.00 0.99±0.00 — 1.41±0.00 1.41±0.00 —
Non-HC 0.35±0.00 0.35±0.00 0.35±0.00 0.33±0.00 0.36±0.03 0.33±0.01
HC 0.34±0.00 0.35±0.00 0.35±0.00 0.33±0.01 0.37±0.04 0.33±0.01

an unweighted graph based on the topology of this WSN. We model the hydraulic heads
as functions on nodes f0 and water flowrates as functions on edges f1. A WSN is often
governed by the following equations

mass conservation :B1f1 = q,
Hazen-Williams equation :[B⊤

1 f0](e) = f̄1(e) := ref1(e)1.852 (4.75)

for a pipe e, where q ∈ RN0 is the demand on nodes, re is the roughness of pipe e [Dini
& Tabesh, 2014]. We then use the WNTR library [Klise et al., 2017] to simulate a scenario
generating the states of node heads and edge flowrates given the pipe roughnesses and the
node demands. The latter are sampled uniformly from 0 to 10 (unit liter/s), modeling the
read-world demand.

We consider the joint state estimation of both heads (using node GPs) and the adjusted
flowrates f̄1 (using edge GPs). Specifically, our GP models are(

f0
f̄1

)
∼GP

((
0
0

)
,

(
K0

K1

))
. (4.76)

We choose the Matérn and diffusion node GPs [Borovitskiy et al., 2021]. For HC edge GPs,
we leverage the physical prior to model K1 = B⊤

1 K0B1 as discussed in Corollary 4.7,
while for non-HC edge GPs, we choose them as in (4.5), of the same type as node GPs.
We randomly sample 50% of the nodes and edges for training and use the rest for test.
Note that the WSN has small edge connectivity. The randomness of the training set may
disconnect the graph, which may deteriorate the performance, causing the large variance
in the metrics.
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5
Topological Schrödinger

Bridge Matching

Gaussian processes on simplicial complexes in Chapter 4 provide us a modest statistical
modeling of simplicial signals. In the probabilistic setting, a more involved question concerns
the matching of two arbitrary distributions, which is fundamental in the modern machine
learning tasks, especially in generative modeling. In this chapter, we investigate the problem of
matching distributions of simplicial signals and intend to build models for generative learning
and matching on simplicial complexes. The classical formulation of Schrödinger bridge (SB)
problem originates from Schrödinger’s Gedankenexperiment where he aimed to seek the “most
likely process” that describes the random evolution between two marginals, i.e., two point
coulds of diffusive particles, relative to a Wiener reference process. This was later on shown to
be closely related to optimal transport theory. Here, instead of Wiener process, we formulate
the topological SBP to match two distributions of simplicial signals with respect to a topology-
aware reference driven by the simplicial convolution in Chapter 2, e.g., stochastic diffusion on
graphs/simplicial complexes. Inspired by the recent results on SBPs, we try to find the solutions
of topological SBP in both Gaussian and general cases. While a closed form solution for the
general case is intractable, we leverage the power of neural networks (e.g., simplicial CNNs
in Chapter 3) to approximate the involved unknowns. Upon the recent likelihood training
framework that unifies the diffusion and flow matching methods, we build the topological SB
models for generative modeling and matching on simplicial complexes. This chapter is based
on the work published in Yang [2025].

5.1 Introduction
As a fundamental problem in statistics and optimization,matching distributions aims to find
a map that transforms one distribution to another. It has found numerous applications in
machine learning tasks, particularly in generative modeling, which often involves learning
a transformation from a data distribution to a simple one (often Gaussian) for efficient
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sampling and inference. While various methods have been proposed, including score-
based [Ho et al., 2020; Song et al., 2020b] and flow-based [Lipman et al., 2022] generative
models, among others [Albergo et al., 2024; Neklyudov et al., 2023; Tong et al., 2024a], the
Schrödinger Bridge (SB)-based methods [Chen et al., 2022b; De Bortoli et al., 2021; Liu et al.,
2024] provide a principled framework for matching arbitrary distributions.

Inspired by Schrödinger [1931; 1932], the classical SB problem (SBP) aims to find an optimal
stochastic process that evolves from an initial distribution to a final distribution, while
minimizing the relative entropy (Kullback-Leibler divergence) between the measures of the
optimal process and the Wiener process [Léonard, 2014]. Alternatively, the SBP can be cast
as a stochastic optimal control (SOC) problem which minimizes the kinetic energy while
matching the distributions through a nonlinear stochastic process [Dai Pra, 1991; Pavon &
Wakolbinger, 1991]. The optimal solution to this problem satisfies a Schrödinger system of
coupled forward-backward (FB) stochastic differential equations (SDEs) [Léonard, 2014].
Traditionally, SB problems have been solved by addressing the unknowns in this system
using purely numerical methods [Föllmer, 1988; Fortet, 1940]. More recently, machine
learning approaches have been proposed [Chen et al., 2022b; De Bortoli et al., 2021; Pavon
et al., 2021; Vargas et al., 2021; Wang et al., 2021] where the unknowns are approximated
by learnable models (e.g., Gaussian processes, neural networks) trained on data-driven
objectives, such as the likelihood training [Chen et al., 2022b].

However, SB-based methods have primarily focused on solving tasks in Euclidean spaces,
such as time series, images [Deng et al., 2024] and point clouds. Modern learning tasks
often involve data supported on irregular topological domains such as graphs, simplicial
and cell complexes. Arising from applications like chemical reaction networks, biological
networks, power systems, social networks [Bick et al., 2023; Faskowitz et al., 2022; Wang
et al., 2022], the emerging field of topological machine learning [Papamarkou et al., 2024]
centers on signals supported on topological objects such as nodes and edges, which can
represent sensor data or flow type data over network entities. A direct application of
existing SB models to such topological data may fail due to their inability to account for
the underlying topology. Thus, in this work, we investigate the SBP for topological signals,
with a focus on node and edge signals over networks modeled as graphs and simplicial
complexes. To this end, we propose the Topological Schrödinger Bridge problem (T SBP)
between two distributions of signals defined on a topological domain, with a focus on the
distributions of node signals and edge flows on graphs and simplicial complexes. To match
distributions of such topological signals, our contributions are threefold.
(i) We propose the Topological Schrödinger Bridge problem (T SBP), which seeks an optimal

topological stochastic process that minimizes the relative entropy with respect to a reference
process, while respecting the initial and final distributions. To incorporate the domain
knowledge, we define the reference process to follow topology-aware SDEs (T SDEs) with a
linear topological convolution drift term, admitting tractable Gaussian transition kernels.
This subsumes the commonly-used stochastic heat diffusions on graphs and simplicial
complexes for networked dynamics modeling.
(ii) Focusing on the case where the end distributions are Gaussian, we find the closed-form

optimal Gaussian T SB and characterize it in terms of a stochastic interpolant time marginal,
as well as its Itô differential. This generalizes the results of Bunne et al. [2023] where the
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reference process is limited to SDEs scalar-valued linear coefficients. For the general case,
we show that, upon existing results, the optimal T SB adheres a pair of FB-T SDEs governed
by some unknown terms (also called policies), which in turn satisfy a system driven by
topological dynamics.
(iii) We propose the T SB-based model for topological signal generative modeling and

matching. Specifically, we parameterize the hard-to-solve policies by some (topology-aware)
learnable models (e.g., graph/simplicial neural networks), and train them by maximizing
the likelihood of the model based on Chen et al. [2022b]. We show that T SB-based models
unify the extensions of score-based and diffusion bridge-based models [Song et al., 2020b;
Zhou et al., 2024] for topological signals.
We validate the theoretical results and demonstrate the practical implications of T SB-
models on synthetic and real-world networks involved with brain signals, single-cell data,
ocean currents, seismic events and traffic flows. Before concluding the chapter, we provide
an extensive discussion on future directions in generative modeling for topological data.
Overall, our work lies in the intersection of SB theory, stochastic dynamics on topology,
machine learning and generative modeling for topological signals.

Notations. For x ∈ Rn, the gradient, divergence and Hession of a function f(x) are
denoted by∇f(x) ∈ Rn,∇·f(x) ∈ R and ∆f(x) ∈ Rn×n, respectively. We denote by X
a stochastic process (Xt)0≤t≤1 as a map X : [0,1]×X → Rn from the unit time interval
[0,1] (i.e., index space) and sample space X (e.g., Euclidean space) to Rn (state space).
Here Xt is a random variable representing the state at t. The standard n-dim Wiener
process (Brownian motion) is denoted by W . Let Ω = C([0,1],Rn) denote the space of
all continuous Rn-valued paths on [0,1], and let P(Ω) denote the space of probability
measures on Ω. For a path measure P ∈ P(Ω) describing the law of the process X , we
denote by Pt its time marginal that describes the distribution of Xt, i.e., if X ∼ P, then
Xt ∼ Pt.

In this chapter, we make the following assumptions on the stochastic processes and mea-
sures. We assume distributions of random variables are associated with measures that have
a density with respect to the Lebesgue measure. We may then use the terms measure and
density interchangeably, unless otherwise specified.

5.2 Background
5.2.1 Schrödinger Bridge Problem

Let QW be the path measure of a Wiener process dYt = σdWt with variance σ2. The
classical SBP [Léonard, 2014] seeks an optimal path measure P on Ω by minimizing its
relative entropy DKL with respect to QW

minDKL(P∥QW ), s.t. P ∈ P(Ω),P0 = ρ0,P1 = ρ1, (SBP)

where ρ0 and ρ1 are the prescribed initial and final time marginals on Rn. Intuitively, the
SBP aims to find a stochastic process evolving from ρ0 to ρ1 that are “most likely” to a
reference (a prior) process, here the Wiener process. This is in fact a dynamic formulation
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of the entropic-regularized optimal transport (OT) with a quadratic transport cost [Villani,
2009]. The static formulation reads

min
π∈Π(ρ0,ρ1)

∫
Rn×Rn

1
2∥x0−x1∥2 dπ(x0,x1)+σ2DKL(π∥ρ0⊗ρ1) (E-OT)

where Π(ρ0,ρ1) is the set of couplings (or transport plans) between ρ0 and ρ1, and ρ0⊗ρ1
denotes their product measure (i.e., independent coupling). The first term is the quadratic
cost of transporting mass from ρ0 to ρ1, and the second term is the relative entropy of the
coupling π with respect to the independent coupling ρ0⊗ρ1, weighted by the variance σ2

of the Wiener process.

In this static formulation, the optimization is over the coupling of ρ0 and ρ1, as opposed to
the full path measure in the dynamic formulation (SBP). As σ→ 0, E-OT reduces to the
typical 2-Wasserstein OT, and the associated dynamic problem is given by Benamou &
Brenier [2000]. The entropy regularization makes the OT strongly convex, ensuring unique
solutions, and allows for efficient algorithms like Sinkhorn algorithm [Villani, 2009].

5.2.2 Topological Signals
In this work, we are interested in signals defined on a graph, a simplicial complex or a
cell complex such a topological domain, denoted by T . If T is a graph with a node set
and an edge set, we may define a node signal x ∈ Rn as a collection of values associated
to the nodes, where n denotes the number of nodes. Such signals often arise from sensor
measurements in sensor networks, user properties in social networks, etc [Shuman et al.,
2013]. Similarly, if T is a simplicial 2-complex SC2 with the sets of nodes, edges, as well as
triangular faces (or triangles), we can define an edge flow by associating a real value to each
oriented edge. Here, for an edge e= {i, j}, if we choose [i, j] as its positive orientation, then
[j, i] represents the opposite [Godsil & Royle, 2001]. The sign of the signal thus indicates
the flow orientation relative to the chosen one. Such edge signals often represent flows
of information or energy, such as water flows, power flows, or transaction flows [Bick
et al., 2023]. Moreover, we may consider signals on general topological objects such as
higher-order simplices (or cells). If n is the number of simplices, we refer to x ∈ Rn as a
topological signal where the i-th entry represents the signal value on the i-th simplex. In
topology, these are called cochains, which are the discrete analogues to differential forms
[Lim, 2020].

The emerging field of learning on graphs and topology [Barbarossa & Sardellitti, 2020;
Papamarkou et al., 2024] concerns such topological signals, where the central idea is to
leverage the underlying topological structure in T . For example, the graph Laplacian or
adjacency matrix (or their variants) can be used to encode the graph’s structure, acting as a
spectral operator for node signals [Chung, 1997]. Similarly, in a SC2, the Hodge Laplacian
can be defined as the operator for edge flows, composed of the down and up parts, which
encode the edge adjacency through a common node or triangle, respectively. Other variants
of Hodge Laplacians can also be defined [Grady & Polimeni, 2010; Schaub et al., 2020].
Thus, for a topological signal x ∈ Rn, we assume a Laplacian-type, positive semidefinite,
topological operator L ∈ Rn×n on T which encodes the topological structure.
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In a probabilistic setting, a topological signal can be considered random, following some
high-dim distribution onRn associated with the topology T . This allows for the application
of probabilistic methods to topological signals, similar to Euclidean cases. Recent works
[Alain et al., 2024; Borovitskiy et al., 2021; Yang et al., 2024] have modeled node signals
and edge flows using Gaussian processes (GPs) on graphs and simplicial complexes. These
GPs encode the topological structure by building their covariance matrix (kernel) Σ as a
matrix function of the associated Laplacian L. For example, a diffusion node GP uses the
kernel Σ = exp(−κ2

2 L) with a hyperparameter κ and the graph Laplacian L. Other GPs
can be defined as well to model signals in specific subspaces with certain properties [Yang
et al., 2024] or to jointly model the node-edge signals [Alain et al., 2024].

5.3 Topological Schrödinger Bridge Problem
In a topological domain T , we consider a topological stochastic process X where the index
space is instead the product space of [0,1] and the set of topological objects (e.g., nodes,
edges) in T , and the state space Rn is the space of topological signals with n the cardinality
of the set. When we consider the node set of a graph (the edge set of a SC2), X is a
stochastic process of node signals (edge flows). We assume that X follows some unknown
dynamics with its law described by the path measure P. For some prescribed initial and
final time-marginals, i.e., X0 ∼ P0 = ν0 and X1 ∼ P1 = ν1, we then aim to obtain the
optimal P by solving the Topological Schrödinger Bridge Problem (T SBP):

minDKL(P∥QT ), s.t. P ∈ P(Ω),P0 = ν0,P1 = ν1. (T SBP)

Here, QT is the path measure of a reference process Y which follows some prior topology-
aware stochastic dynamics on T . Effectively, the solution P to T SBP describes the “most
likely” process X that conforms to the prior Y in the sense of minimizing relative entropy
with respect to QT , while respecting the initial and final distributions ν0 and ν1.

Topological stochastic dynamics. For the reference process Y , given an initial topologi-
cal signal condition Y0 = y0, we assume it follows a general class of topological SDEs:

dYt = f(t,Yt;L)dt+gt dWt, (T SDE)

where ft ≡ f(t, · ;L) : Rn→ Rn is a time-varying drift that depends on the topological
structure T through the operator L, and gt ≡ g(t) ∈ R is a scalar diffusion coefficient. We
assume that gt is uniformly lower-bounded, i.e., g2

t ≥ c1 for some c1 > 0, and that ft is
Lipschitz continuous in the sense that there exists a constant c2 > 0 such that ∥f(t,y;L)−
f(t,y′;L)∥ ≤ c2∥y−y′∥ for all y,y′ ∈ Rn and t ∈ [0,1].

For tractability, we consider a class of linear dynamics on T with the following drift term:

f(t,Yt;L) =Ht(L)Yt +αt, with Ht(L) =
∑K

k=0hk(t)Lk (5.1)

and αt ∈ Rn a bias term. Here, Ht(L), denoted simply as Ht, is a matrix polynomial of
L with time-varying coefficients hk,t ≡ hk(t), which is able to approximate any analytic
function of L for an appropriate K by the Cayley-Hamilton theorem. The drift ft is also
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referred to as a topological convolution of the topological signal in the literature. With a
graph LaplacianL, this returns the graph convolution of a node signal [Sandryhaila &Moura,
2013; 2014], and with the Hodge Laplacian for edges or general simplices, it yields the
simplicial convolution [Yang et al., 2022b]. Various topological machine learning methods
have been developed based on such convolutions for their expressivity and efficiency. We
provide a few examples of linear T SDE, which will be used later.

Topological stochastic heat diffusion: T SDE gives the stochastic variant of heat equation on
T

dYt =−cLYt dt+gt dWt, (T SHeat)
by setting Ht = −cL, with c > 0. When T is a graph with the graph Laplacian L, this
dynamics enables modeling graph-time GPs [Nikitin et al., 2022], networked dynamic
system [Delvenne et al., 2015; Pereira et al., 2010; Santos et al., 2024], and social opinion
dynamics [Gaitonde et al., 2021]. More importantly, in the deterministic case of gt = 0, it has
a harmonic steady-state, revealing the topological features of T . Specifically, node diffusion
converges to a state that can identify the connected components (0-dim holes), while edge
diffusion in a SC2 based on the Hodge Laplacian has a converging state of circulating
around cycles (1-dim holes). We refer to Fig. 4.3 for such illustrations [cf. diffusion over
graphs and SC2 in Chapter 4]. In line with our goal of distribution matching for topological
signals, we present three examples of T SHeat, inspired by diffusion models for generative
modeling [Song et al., 2020b].
Example 5.1 (T SHeatBM). Consider a constant gt = g in T SHeat. This results in a mixture
of a topological heat diffusion and BM with variance g2, which we refer to as T SHeatBM.
Example 5.2 (T SHeatVE). For some noise scales 0<σmin <σmax, consider a time-increasing
gt =

√
dσ2(t)/dt with σ(t) = σmin(σmax/σmin)t, which drives the well-known variance

exploding (VE) noising process [Song & Ermon, 2020; Song et al., 2020b]. The resulting
form of T SHeat is

dYt =−cLYt dt+
√

dσ2(t)/dtdWt. (T SHeatVE)

Example 5.3 (T SHeatVP). When combined with another noising process, known as the
variance preserving (VP) process [Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al.,
2020b], we obtain

dYt =−
(1

2β(t)I+ cL
)
Yt dt+

√
β(t)dWt, (T SHeatVP)

where β(t) = βmin + t(βmax−βmin) with scales 0< βmin < βmax. The drift here can be
considered as an instantiation of the topological convolution Ht = −

(1
2β(t)I + cL

)
in

(5.1).

Gaussian transition kernels. The T SDE, as an Itô process, is fully characterized by its
transition kernel in a probabilistic sense. As a result of the linear drift (5.1) of T SDE, the
associated transition kernel pt|s(yt|ys) (i.e., conditional distribution of Yt|Ys) is Gaussian.
Its mean and covariance can be computed according to Särkkä & Solin [2019, Eq. 6.7]. Let
the transition matrix of the ODE dYt =Ht(L)Yt dt be denoted by Ψts ≡Ψ(t,s), which is
given by Ψts = exp(

∫ t
s Hτ dτ) [cf. Lemma 5.18]. For brevity, we denote Ψt0 as simply Ψt.

We then have the following lemma.
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Lemma 5.4 (Statistics of transition kernels). For the T SDE with the linear drift (5.1), its
Gaussian transition kernel pt|0(yt|y0) has the meanmt and the cross covarianceKt1t2 , at t1
and t2:

mt = Ψty0 +Ψt

∫ t

0
Ψ−1

τ ατ dτ =: Ψty0 + ξt, (cond. mean)

Kt1t2 = Ψt1

(∫ min{t1,t2}

0
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t2 . (cond. cross cov)

More importantly, we may characterize them for T SHeatBM and T SHeatVE in closed-forms.
Both have the same mean mt = Ψty0 with Ψt = exp(−cLt), and their covariances are
given by:

Kt1t2 =
{

g2

2c

[
exp(−cL|t1− t2|)− exp(−cL(t1 + t2))

]
L−1, for T SHeatBM

σ2
min ln

(
σmax
σmin

)
exp(−cL(t1 + t2))

[
exp(2Amin{t1, t2})− I

]
A−1, for T SHeatVE

(5.2)
with A= ln

(
σmax
σmin

)
I+ cL. If L is singular, we use a perturbed L+ ϵI for a small ϵ > 0 to

computeKt1t2 or numericallymodel the T SHeat. We detail the derivations in Appendix 5.B.
These expressions allow for tractable solutions for the T SBP and, more importantly, facili-
tate the construction of T SB-based learning models, as will be discussed later.

5.3.1 Towards an Optimal Solution of T SBP
To solve the classical SBP, early mathematical treatments [Beurling, 1960; Föllmer, 1988;
Fortet, 1940; Jamison, 1975] lead to a Schrödinger system characterizing the SB optimality.
Similarly, by Disintegration of Measures, we can convert the T SBP to a static problem over
the joint measure P01 of the initial and final states, instead of the full path measure P

minDKL(P01 ∥QT 01), s.t. P01 ∈ P(Rn×Rn),P0 = ν0,P1 = ν1 (T SBPstatic)

where QT 01 is the joint measure of the reference process Y at t= 0 and 1. The T SBPstatic
only concerns at the boundary times, unlike the (dynamic) T SBP. Using Lagrange multipli-
ers for the linear constraints above, we can arrive a Schrödinger System that is instead driven
by topological dynamics (see Appendix 5.C), differing from the classical case [Jamison, 1975;
Léonard, 2014]. This can be also interpreted through the equivalent E-OT formulation of
T SBPstatic:

min
P01

∫
Rn×Rn

1
2∥y1−Ψ1y0− ξ1∥2K−1

11
dP01(y0,y1)+

∫
Rn×Rn

log(P01)dP01 (T E-OT)

where the transport cost is linked to the T SDE as aK−1
11 -weighted norm of the difference

y1−m1.

On the other hand, this system could also be derived from the SOC view which makes
more apparent connections to machine learning methods. Initiated by the variational
formulation of the classical SBP by Dai Pra [1991]; Pavon & Wakolbinger [1991], Caluya &
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Halder [2021] extended the analysis to the case with a general nonlinear reference process
and derived the optimality condition. Since it is convenient to arrive an SOC formulation
for the T SBP (see Appendix 5.C), we readily obtain the following optimality.
Proposition 5.5 (T SBP optimality; Caluya & Halder [2021]; Chen et al. [2022b]). The
optimal solution P of T SBP can be expressed as the path measure of the following forward
(5.3a), or equivalently, backward (5.3b), T SDE:

dXt = [ft +gtZt]dt+gt dWt, X0 ∼ ν0,Zt ≡ gt∇ logφt(Xt) (5.3a)

dXt = [ft−gtẐt]dt+gt dWt, X1 ∼ ν1, Ẑt ≡ gt∇ log φ̂t(Xt) (5.3b)
where (5.3a) runs forward and (5.3b) runs backward with a backward Wiener process. Here,
φt ≡ φt(Xt) and φ̂t ≡ φ̂t(Xt) satisfy a pair of PDEs system (forward-backward Kolmogorov
equations). Using nonlinear Feynman-Kac formula (or applying Itô’s formula on logφt and
log φ̂t), this PDE system admits the SDEs

dlogφt = 1
2∥Zt∥2 dt+Z⊤

t dWt,

dlog φ̂t =
(

1
2∥Ẑt∥2 +∇· (gtẐt−ft)+ Ẑ⊤

t Zt

)
dt+ Ẑ⊤

t dWt.
(5.4)

Then, the optimal path measure has the time-marginal Pt = φt(Xt)φ̂t(Xt) = P(5.3a)
t =

P
(5.3b)
t . That is, the paths given by (5.3a) and (5.3b) are equivalent in the sense that they have

the same time-marginal distributions.

This optimality condition adapts the result from Chen et al. [2022b] for T SBP. From the
forward-backward T SDEs (FB-T SDEs in (5.3)), we see that the optimal Zt guides the
forward T SDE to the final ν1, and likewise Ẑt adjusts the reverse T SDE to return to the
initial ν0. While solving the system (5.4) is still highly nontrivial, we highlight that the
FB-T SDEs (5.3) and (5.4) pave a way for constructing generative models and efficient
training algorithms, as demonstrated by the recent works, to name a few, [Chen et al.,
2022b; De Bortoli et al., 2021; Pavon et al., 2021; Vargas et al., 2021]. We further discuss in
detail how to build such models for topological signals in Section 5.5.

5.4 Gaussian Topological SBP
In this section, we consider the special case of T SBP where the initial and final measures
are Gaussians, to which we refer as the Gaussian topological SBP (GT SBP). We show that
there exists a closed-form GT SB by following the idea in Bunne et al. [2023], which focuses
on a limited class of reference SDEs with a scalar coefficient in the drift, instead of a
convolution operatorHt(L). We establish the first closed-form expression on the GT SB in
the following theorem.
Theorem5.6. Denote by P the solution to GT SBPwith ν0 =N (µ0,Σ0) and ν1 =N (µ1,Σ1).
Then, P is the path measure of a Markov Gaussian process whose marginal Xt ∼N (µt,Σt)
admits an expression in terms of the initial and final variables, X0,X1, as follows

Xt = R̄tX0 +RtX1 + ξt−Rtξ1 +ΓtZ (5.5)
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where Z ∼N (0, I) is standard Gaussian, independent of (X0,X1), and we have

Rt =Kt1K
−1
11 , R̄t = Ψt−RtΨ1,

Γt := Cov[Yt|(Y0,Y1)] =Ktt−Kt1K
−1
11 K1t.

(5.6)

Proof. We provide a sketch of the proof here, with the full derivations presented in Ap-
pendix 5.D.
1. By Disintegration of Measures, we first solve the reduced static Gaussian T SBPstatic

(i.e., T E-OT). We can then convert the problem into a Gaussian E-OT via a change-of-
variables. The closed-form formula for the latter has been recently found by Janati et al.
[2020, Theorem 1]. Via an inverse transform, we can then obtain the optimal coupling P01
[i.e., the optimal GT SBstatic].
2. In the disintegration of GT SBP to its static problem, the optimum is achieved when
P shares the bridge with the reference QT (i.e., P is in the reciprocal class of QT ) [Föllmer,
1988; Léonard, 2014, Proposition 1]. The QT -bridge, Qxy

T = QT [·|Y0 = x,Y1 = y], can be
constructed using the conditional Gaussian formula and Lemma 5.4. Upon this, together
with the optimal P01, we can construct the optimal Xt and the marginal Pt. □

At the first sight, the construction of optimal processX in (5.5) meets the recently proposed
stochastic interpolant framework by Albergo et al. [2024, Definition 1], in that Xt=0 =X0
and Xt=1 = X1, and Γ0 = Γ1 = 0. Moreover, from (5.5), we can compute the marginal
statistics Pt in terms of its mean µt and covariance Σt in closed-form as well, detailed in
Corollary 5.26. In the following, we characterize the process X under the optimal P in
terms of its Itô differential.
Theorem 5.7 (SDE representation). Under the optimal P, the process X admits the SDE
dynamics:

dXt = fT (t,Xt;L)dt+gt dWt, where

fT (t,x;L) = S⊤
t Σ−1

t (x−µt)+ µ̇t

(5.7)

with µt,Σt the mean and covariance of Xt [cf. Corollary 5.26] and we have

St = Pt−Q⊤
t +HtKtt−Kt1K

−1
11 Υ⊤

t , (5.8)

withPt = (RtΣ1 +R̄tC)Ṙ⊤
t ,Qt =− ˙̄Rt(CR⊤

t +Σ0R̄
⊤
t ),Υt =HtKt1 +g2

t Ψ−1
t Ψ⊤

1 , where
C is the covariance ofX0,X1 in the optimal P01, and Ṙt,

˙̄Rt are the time-derivatives ofRt, R̄t.

Proof. We detail the proof in Appendix 5.D and outline a sketch here. From Caluya &
Halder [2021]; Léonard [2014] [cf. Theorem 5.24], the optimal P is the law of an SDE in the
class of (5.7). To determine the drift, we first compute the associated infinitesimal generator
by definition for some test function. Since the generator for an Itô SDE is known (dependent
on the drift) [Särkkä & Solin, 2019, Eq. 5.9], we can then match the two expressions and
find a closed-form for the drift term. □

Theorems 5.6 and 5.7 characterize the optimal P of the GT SBP from different views. While
the stochastic interpolant formula is intuitive and straightforward, it is natural to look for
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the associated SDE for a Markov measure. Despite the packed variables, both results [cf.
Eqs. (5.5) and (5.7)] fundamentally depend on the transition kernel, defined by the transition
matrix Ψt and ξt,Kt1t2 [cf. Lemma 5.4], which has closed-forms (5.2) for T SHeatBM and
T SHeatVE, and is related to the topological convolution Ht. From a broader perspective,
Theorems 5.6 and 5.7 extended the existing results of Bunne et al. [2023], where the
reference process has a limited drift cYt +αt for some scalar c. While Chen et al. [2016]
aimed to solve for a linear drift with a matrix coefficient, their results lead to the solution
of a matrix Riccati equation, which is computationally expensive.

Solution complexity. While the variables involved in Eqs. (5.5) and (5.7) involve many
matrix operations, we remark that (i) the underlying Ψt is a matrix function of L and can be
computed efficiently [Higham, 2008]. Given the eigen-decomposition L= UΛU⊤, which
scales atO(n3), denote by h̃t,s

k =
∫ t

s hk,τ dτ the integral of the scalar coefficients inHt [cf.
(5.1)], we then have Ψts = U exp

(∑K
k=0 h̃

t,s
k Λk

)
U⊤, where the matrix exponential can

be directly computed elementwise on each diagonal element of Λ. We may also consider
the Chebyshev polynomial approximation based on Huguet et al. [2023], which is feasible
thanks to the closed-form Chebyshev coefficients for matrix exponentials [Marcotte et al.,
2022, Eq. 5], despite the need for all t ∈ [0,1]. (ii) The other terms depending on Ψt can be
computed similarly in the eigenspectrum of L.

5.5 Topological Signal Generative Models
The recent SB-based generative modeling framework primarily relies on the learnable
parameterizations of the (Zt, Ẑt) pair (also viewed as the FB policies) in the FB-SDEs
and a trainable objective that approximates the SBP. Specifically, Vargas et al. [2021] and
De Bortoli et al. [2021] use GPs and neural networks, respectively, to parameterize the
policies, and alternatively train them using iterative proportional fitting (IPF) to solve the
half -bridge problem. On the other hand, Chen et al. [2022b] derived a likelihood based on
the SB optimality condition, generalizing the score matching framework [Song et al., 2020b].
Upon the proposed T SBP, along with the above theoretical results, we now discuss how to
build generative models for topological signals using the existing framework designed for
Euclidean domains.

T SB-based model. Consider the matching task: In some topological domain T , given two
sets of signal samples following initial and final distributions ν0,ν1 on T , we aim to learn
a Topological Schrödinger Bridge between the two distributions. From Proposition 5.5, the
optimal T SB follows the FB-T SDEs in (5.3). Moreover, given a path sampled from the
forward SDE (5.3a) with an initial signal x0, one can obtain an unbiased estimation of the
log-likelihood L(x0) of the T SB model driven by the optimal policies by using (5.4) [Chen
et al., 2022b, Theorem 4]. Similarly, the log-likelihood L(x1), given a final sample x1, can
be found. This allows us to build a T SB-based model for topological signals, following the
ideas of Chen et al. [2022b]; De Bortoli et al. [2021].

We first parameterize the policies, Zt and Ẑt, by two learnable models Zθ
t ≡ Z(t,x;θ)

and Ẑ θ̂
t ≡ Ẑ(t,x; θ̂) with parameters θ and θ̂, resulting in the parameterized FB-T SDEs.

Then, we can perform a likelihood training by minimizing the following loss functions in
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an alternative fashion at initial and final signal samples x0 and x1

l(x0; θ̂) =
∫ 1

0
EXt∼(5.3a)

[
1
2∥Ẑ

θ̂
t ∥2 +gt∇· Ẑ θ̂

t +Zθ⊤
t Ẑ θ̂

t

∣∣∣X0 = x0

]
dt, (5.9a)

l(x1;θ) =
∫ 1

0
EXt∼(5.3b)

[
1
2∥Z

θ
t ∥2 +gt∇·Zθ

t + Ẑ θ̂⊤
t Zθ

t

∣∣∣X1 = x1

]
dt, (5.9b)

which are, respectively, the upper bounds of the negative log-likelihoods (after dropping the
unrelated terms) of the signal samples x0 and x1 given paths sampled from the FB-T SDEs.

Other choice of reference T SDE. In this work, we mainly consider reference dynamics
following T SHeatBM, T SHeatVE and T SHeatVP. For the dynamics involved with Hodge
Laplacians in a SC2, we may further allow heterogeneous diffusion based on the down
and up parts of the Laplacian. Bunne et al. [2023] proposed to better initialize the SB
model using the closed-form Gaussian SB. Likewise, we can consider the GT SB in (5.7) as
a stronger prior process, which yet requires a GP approximation from signal samples. We
also consider fractional Laplacian for some cases to enable a more efficient exploration of
the network [Riascos & Mateos, 2014] due to its non-local nature.

Topological neural networks (TNNs). While Chen et al. [2022b]; De Bortoli et al.
[2021] applied convolutional neural networks for the Euclidean SBP, we naturally consider
parameterizing the policies using the emergent TNNs. For node signals, we could consider
graph convolution networks (GCNs) [Kipf & Welling, 2017]; and likewise, for edge flows in
a SC2, simplicial neural networks (SNNs) [Roddenberry et al., 2021]. These topology-aware
models perform convolutional learning upon the topological structure, more efficient with
less parameters and better in performance.

Complexity. Like standard SB models, T SB-based models also require simulations of the
FB-T SDEs. The key difference is that thesemodels operate over topological networks where
the drift (5.1) involves a matrix-vector multiplication HtYt. However, this is essentially
a recursive iteration of LYt, which is efficient due to the typically sparse structure of L,
reflecting the underlying topological sparsity. Moreover, our TNN-parameterized policies
are also efficient for the same reason.

Connection to other models. As discussed in Chen et al. [2022b], in the special case of
Zt ≡ 0 and Ẑt as the score function (scaled by gt), the likelihood of SB models reduces to
that of the score-based models [Song et al., 2020b] when ν1 is a simple Gaussian and the
forward process is designed to reach ν1. Furthermore, if the reference process is poorly
designed. SB models can still guide the process to the target distribution through these
learnable policies, thus generalizing score-based models. On the other hand, for FB-T SDEs,
we can also obtain probability flow ODEs [Chen et al., 2018; Song et al., 2020b] which share
the same time-marginals and likelihoods, allowing for exact likelihood evaluation of the
model. Training through the likelihood of these flow ODEs naturally links to flow-based
models. While there are no direct score-based or flow-based models for topological signals,
the above discussions apply to T SB-based models. We refer to Appendix 5.E for more
details where we show how the variants of these models including the diffusion bridge
models [Zhou et al., 2024] for topological processes can be constructed.
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5.6 Experiments

0 1t
0
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We first validate the theoretical results on GT SB using the
synthetic graph in Fig. 4.3. Here, we aim to bridge a zero-
mean graph Matérn GP ν0 with Σ0 = (I+L)−1.5 and a diffu-
sion GP ν1 with Σ1 = exp(−20L). Using the T SHeatBM and
T SHeatVE reference dynamics, we obtain the closed-formXt

in (5.5), from which we further compute the covariance Σt [cf.
Corollary 5.26]. We measure the Bures-Wasserstein distance
between Σt and Σ1. From the right-hand-side figure, we see
that both bridges reach the target distribution. The bridges exhibit distinct behaviors de-
pending on the reference dynamics, as demonstrated by the disparate curves for T SHeatVE
with c= 0.01 and 10. This highlights the flexibility of T SB-models in exploring a large
space of topological bridges.

We then focus on evaluating T SB-based models for topological signal generation (ν1 is
a Gaussian noise) and matching (general ν1) in different applications, with the goal of
investigating the question: whether T SB-based models are beneficial for these tasks
compared to the standard SB-basedmodels? For this goal, we consider as the baseline SB-
based models in Euclidean domains which use BM, VE and VP as reference dynamics [Chen
et al., 2022b], labeled as SB-BM, SB-VE and SB-VP, respectively. We consider T SB-
basedmodels using T SHeatBM, T SHeatVE and T SHeatVP as references, labeled asTSB-BM,
TSB-VE and TSB-VP, respectively. We refer to Appendix 5.F for the experimental details
and additional results, as well as complexity analyses in Appendix 5.F.2.

Topological signal matching. We first consider matching two sets of fMRI brain signals
from the Human Connectome Project [Van Essen et al., 2013], which represent the liberal
(with high energy, as the initial) and aligned (with low energy, as the final) brain activities,
respectively. We use the recommended brain graph [Glasser et al., 2016] that connects 360
parcelled brain regions with edge weights denoting the connection strength. From Fig. 5.1,
we see that a TSB-VE model learns to reach at a final state with low energy indicating
the aligned activity, whereas SB-VE fails.

We then consider the single-cell embryoid body data that describes cell differentiation over
5 timepoints [Moon et al., 2019]. We follow the preprocessing from Tong [2023]; Tong et al.
[2024a;b]. We aim to transport the initial observations to the final state. Our method relies
on the affinity graph constructed from the entire set of observations (∼18k). We define two
normalized indicator functions as the boundary distributions, which specify the nodes
corresponding to the data observed at the first and last timepoints. Fig. 5.2 shows the
two-dim phate embeddings of the groundtruth and predicted data points using TSB-BM
and SB-BMmodels. Here, SB-BM gives very noisy predictions, especially for intermediate
ones, even when trained on the full dataset (see Table 5.8).

Edge flows have been used to model vector fields upon a discrete Hodge Laplacian estimate
of the manifold Helmholtzian [Chen et al., 2021c]. Following the setup there, we consider
the edge-based ocean current matching in a SC2 (∼20k edges). With an edge GP, learned
by Yang et al. [2024] from drifter data, as the initial distribution modeling the currents, we
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Figure 5.1: Energies of true (Left) final state and the predictions obtained from TSB-VE (Center) and SB-VE
(Right) models.

Figure 5.2: Phate embeddings of the single-cell data observations (Left) and predictions based on
TSB-BM (Center) and SB-BM (Right) models.

synthetize a curl-free edge GP as the final one, modeling different behaviors of currents.
From Fig. 5.3, we see that SB-BM fails to reach the final curl-free state, while TSB-BM
becomes more divergent, ultimately closer to the target.

For these matching tasks, we evaluate the forward final predictions using 1-Wasserstein
distances in Table 5.1, showing the consistent superiority of T SB-based models over SB
ones. We reasonably argue that this difference is due to the improper reference in SB-based
models, which overlooks the underlying topology. This highlights the role of topology
using T SB-based models in these tasks.

Generative modeling. We model the magnitudes of yearly seismic events from IRIS as
node signals on a mesh graph of 576 nodes based on the geodesic distance between the
vertices of an icosahedral triangulated earth surface [Moresi & Mather, 2019]. We also
consider the traffic flow from PeMSD4 dataset modeled as edge flows on a SC2 with 340
edges [Chen et al., 2022c]. From Table 5.1, we see that T SB-based models consistently
outperform SB-based models also for signal generation tasks, highlighting the importance
of topology-aware reference processes.

0 1 2 3 4 5Training Stage
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Effect of policy models. From the training curves of
TSB-BM/VE for ResBlock and GCN as policy models on
the right, we see that the training converges much faster and
better using GCN compared to the former. This underlines
the positive effect of TNNs on topological signal generative
modeling. We refer to Tables 5.3 and 5.4 for the performance
metrics of other bridge models with the two policy parame-
terizations on both seismic and traffic datasets.
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Table 5.1: 1-Wasserstein distances for generating and matching tasks across datasets over five runs, where ⋆
indicates using GSB-VE and GTSB-VE for ocean currents.

Method Seismic magnitudes Traffic flows Brain signals Single-cell data Ocean currents
SB-BM 11.73±0.05 18.69±0.02 12.08±0.08 0.33±0.01 7.21±0.00
SB-VE 11.49±0.04 19.04±0.02 17.46±0.14 0.33±0.01 7.17±0.02
SB-VP 12.61±0.06 18.22±0.03 13.41±0.05 0.33±0.01 0.83±0.01

⋆

TSB-BM 9.01±0.03 10.57±0.02 7.51±0.08 0.14±0.03 6.94±0.01
TSB-VE 7.69±0.04 10.51±0.02 7.59±0.05 0.14±0.02 6.89±0.00
TSB-VP 8.40±0.04 9.92±0.02 7.67±0.11 0.14±0.01 0.53±0.00

⋆

Effect of GT SB prior. Instead of using T SHeatBM or T SHeatVE as the reference, we here
consider their corresponding closed-form SDEs (5.7) as the reference, imposing on the
bridges a stronger prior carrying the moment information of the data samples [Bunne et al.,
2023]. For ocean current matching, we show the samples from the learned FB-T SDEs using
GTSB-BM in Fig. 5.3, which arrives at a more faithful final state compared to TSB-BM,
as also evaluated in Table 5.1.

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

Figure 5.3: Forward sampled currents using TSB-BM (Top), SB-BM (Center) and GTSB-BM (Bottom).

5.7 Discussion and Conclusion
In this work, we demonstrated how to construct T SB-based topological signal matching
models within the likelihood training framework [Chen et al., 2022b]. We here discuss
a few promising future directions based on emerging work and unexplored theoretical
results.

On model training. Peluchetti [2023]; Shi et al. [2023] applied iterative Markovian
fitting (IMF), as an alternative of IPF, to the classical SBP. This algorithm, trained via
score matching, extends to T SB-models with T SHeatBM or T SHeatVE as the reference,
thanks to their closed-form transition kernels in (5.2). Recent work proposed (partially)
simulation-free training of SB models. Tong et al. [2024b] learns the optimal SB by flow and
score matching the forward SDE upon a heuristic E-OT. Gushchin et al. [2024]; Korotin
et al. [2024] modeled Schrödinger potentials using Gaussian mixtures, enabling light
training for the optimal drift, and Deng et al. [2024] linearized the forward policy. However,
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these methods require the reference dynamics to be either Wiener process or have scalar
drifts. While training T SB-based models remain scalable w.r.t. the topology size (see
Appendix 5.F.2), extending these approaches to our models is worthwhile but nontrivial.

On model improving. We focused on the reference dynamics driven by a topological
convolution Ht up to order one. It is however worthwhile to consider more involved
(potentially learnable) convolutions to impose more general priors or incorporate physics
knowledge of the process. The scalar diffusion coefficient gt could be extended as matrix-
valued, enabling spatially correlated noising processes over the topology. On the other hand,
SB models perform a kinetic energy minimization from the SOC view. [Liu et al., 2024]
considered generalized SBP by adding a cost term which can model other knowledge of the
process. This broadens the applicability of SB models and T SB models could benefit from
this, when there are external interactions with the topological process or prior knowledge
on the process, such as enforcing curl-free edge flows.

On other models. While we showed the connections of T SB to stochastic interpolants,
flow- and score-basedmodels, as well as diffusion bridges, we notice that the T SB optimality
can be interpreted as a Wasserstein gradient flow (WGF) (see Appendix 5.C.2). For example,
the T SHeatBM-driven T SB is the WGF of a functional F(ν) of some measure ν with
F(ν) = c

∫ 1
2x

⊤Lx · ν(x)dx+ 1
2g

2 ∫ ν logν dx where D(x) := 1
2x

⊤Lx is the Dirichlet
energy of x and the second term is the negative entropy. Thus, the T SHeatBM-driven
forward T SB essentially reduces the Dirichlet energy. This may not always align with the
needs of real-world applications, which in turn motivates developing topological dynamics
learning models via the JKO flow [Jordan et al., 1998] of a parametrized functional D(x)
on topology, akin to approaches used in Euclidean domains [Bunne et al., 2022].

We focused on a fixed topological domain, but it is also of interest to study the case where
T itself evolves over time. The T SBP in this scenario may rely on a time-varying operator
Lt to guide the reference process. This is relevant for recent generative models for graphs,
to name a few [Jo et al., 2022; Liu et al., 2023; Niu et al., 2020], where the graph structure,
together with node features, are learned in the latent space based on diffusion models
[Song et al., 2020b]. Lastly, we remark that discrete distributions on topological domains
may be defined. For instance, nodes of a graph can represent discrete states where node i
is associated with a discrete probability Pi. This motivates the emerging geneartive models
for discrete data [Austin et al., 2021; Campbell et al., 2024; Haefeli et al., 2023; Ye et al.,
2022]. For a formal treatment of matching such discrete distributions on graphs, we refer
to Chow et al. [2022]; Léonard [2013]; Maas [2011]; Solomon [2018].

Conclusion. With the goal of matching topological signal distributions beyond Euclidean
domains, we introduced the T SBP (topological Schrödinger bridge problem). We defined
the reference process using an SDE driven by a topological convolution linear operator,
which is tractable and includes the commonly used heat diffusion on topological domains.
When the end distributions are Gaussians, we derived a closed-form T SB, generalizing
the existing results by Bunne et al. [2023]. In general cases, we showed that the optimal
process satisfies a pair of FB-T SDEs governed by the some optimal policies. Building
upon these results, we developed T SB-based models where we parameterize the policies
as (topological) neural networks and learn them from likelihood training, extending the
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framework of Chen et al. [2022b]; De Bortoli et al. [2021] to topological domains. We
applied T SB-based models for both topological signal generation and matching in various
applications, demonstrating their improved performance compared to standard SB-based
models. Overall, our work lies at the intersection of the SB-based distribution matching and
topological machine learning, and we hope it inspires further research in this direction.
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Appendix

5.A Preliminaries on Schrödinger Bridges
5.A.1 On Optimal Transport
For the static E-OT where the end distributions are Gaussian, when σ = 0, it reduces to
the classical Gaussian optimal transport, whose solution is classical [Villani, 2009]. When
σ > 0, ana analytical solution was found recently by Bojilov & Galichon [2016]; del Barrio
& Loubes [2020]; Janati et al. [2020]; Mallasto et al. [2022] as follows.
Theorem 5.8 (Static Gaussian OT; [Janati et al., 2020]). Let Σ0,Σ1 be positive definite.
Given two Gaussian measures ρ0 ∼N (µ0,Σ0) and ρ1 ∼N (µ1,Σ1), the entropic-regularized
optimal transport

min
π∈Π(µ0,µ1)

∫
Rn×Rn

1
2∥x0−x1∥2 dπ(x0,x1)+σ2DKL(π∥µ0⊗µ1) (E-OT)

admits a closed-form solution π⋆

π⋆ ∼N

([
µ0
µ1

]
,

[
Σ0 Cσ

C⊤
σ Σ1

])
(5.10)

where
Cσ = 1

2(Σ
1
2
0 DσΣ− 1

2
0 −σ2I), Dσ = (4Σ

1
2
0 Σ1Σ

1
2
0 +σ4I)

1
2 . (5.11)

Remark 5.9. Note that while the above results are stated for positive definite covariance
matrices (in order for ρ0 and ρ1 to have a Lebesgue density), the closed-form solution
remains well-defined for positive semi-definite covariance matrices.

5.A.2 On Schrödinger Bridge
Léonard [2014] provides a survey on the connections between SBP and E-OT, showing how
SBP can be solved by reducing it to E-OT. Chen et al. [2021b] offers a stochastic control
perspective of SBP, which reformulates SBP as a variational optimization problem. Both
works provide a comprehensive overview of SBP. Here, we highlight key results necessary
for solving T SBP.
Lemma 5.10 (Léonard [2014]). For a given measure P over the path space Ω, let Pxy represent
the conditioning of P on paths that take values x and y at t= 0 and 1, respectively. That is,
Pxy = P[·|X0 = x,X1 = y]. Let P01 denote the joint probability for the values of paths at the
two ends t= 0,1. Then, P can be disintegrated into

P(·) =
∫
Rn×Rn

Pxy(·)P01(dxdy). (Disintegration of Measures)
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Static SBP By Disintegration of Measures, for all P ∈ P(Ω), the relative entropy can be
factorized as

DKL(P∥Q) =DKL(P01∥Q01)+
∫
Rn×Rn

DKL(Pxy∥Qxy)P01(dxdy), (5.12)

which implies that DKL(P01∥Q01)≤DKL(P∥Q) with equality if and only if Pxy = Qxy

for each (x,y) ∈ Rn×Rn. This allows us to reduce the (dynamic) SBP to the static one.

minDKL(P01∥Q01), s.t. P ∈ P(Rn×Rn),P0 = ρ0,P1 = ρ1. (SBPstatic)

The above results allow us to reduce the dynamic SBP, which focuses on the entire path of
the process, to a static one, which focues instead on the joint distribution of the end points.
Furthermore, it readily gives the following important theorem.
Theorem 5.11 (Föllmer [1988]; Léonard [2014]). The SBP and SBPstatic admit, respectively,
at most one solution. If SBP has the solution P, then its joint-marginal at the end times P01
is the solution of SBPstatic. Conversely, if P01 solves SBPstatic, then the solution of SBP can be
expressed as

P() =
∫
Rn×Rn

Qxy()P01(dxdy), (5.13)

which means that P shares its bridges with Q (i.e., P is in the reciprocal class of Q):

Pxy = Qxy ∀(x,y) ∈ Rn×Rn. (5.14)

Proposition 5.12 (Léonard [2014]). If the reference measure Q is Markov, then the solution
P of SBP is also Markov.

These two results show that the optimal solution shares the bridge with the reference
measure. That is, the optimal bridge can be constructed by composing the solution P01 of
the static problem with the reference measure Qxy .

Schrödinger System
Theorem 5.13 (Chen et al. [2021a]; Jamison [1975]; Léonard [2014]). Given two probability
measures ρ0,ρ1 on Rn and the continuous, everywhere positive Markov kernel pt|s(y|x) (not
necessarily associated to a scaled Brownian motion), there exists a unique pair of (up to scaling)
of functions φ̂0,φ1 on Rn such that the measure P01 on Rn×Rn defined by

P01 =
∫
Rn×Rn

p1|0(y|x)φ̂0(dx)φ1(dy) (5.15)

has marginals ρ0 and ρ1. Moreover, the Schrödinger bridge from ρ0 to ρ1 induces the distri-
bution flow

Pt = φtφ̂t with φt(x) =
∫
p1|t(y|x)φ1(dy), φ̂t(x) =

∫
pt|0(x|y)φ̂0(dy). (5.16)

This theorem is stated for a general Markov kernel that is not necessarily associated with a
Brownian motion. Thus, it can be readily applied to the topological case where the kernel
is governed by T SDE.
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SOC Formulation Benamou & Brenier [2000]; Dai Pra [1991]; Pavon & Wakolbinger
[1991] showed an equivalent SOC formulation of the SBP that aims to minimize the kinetic
energy as follows

min
u∈U
E

[∫ 1

0

1
2∥u(t,Xt)∥2

]
, s.t.

{
dXt = u(t,Xt)dt+σdWt

X0 ∼ ρ0,X1 ∼ ρ1,
(SBPsoc)

where U is the set of finite control functions ut ≡ u(t,x). This derivation builds upon
the fact that the square of the Euclidean distance can be expressed as the infimum of an
action integral. We refer to the derivations in Chen et al. [2021b, Section 3.3]. Given the
SDE constraint in SBPsoc, the associated marginal density ρt ≡ ρ(t,x) evolves according to
the Fokker-Planck-Kolmogorov equation (FPK, Risken [1996]). This allows to arrive an
equivalent variational formulation

min
(ρt,ut)

∫
Rn

∫ 1

0

1
2∥u(t,x)ρ(t,x)∥2 dtdx s.t.

{
∂tρt +∇· (ρtut) = σ2

2 ∆ρt,

ρ0 = ρ0,ρ1 = ρ1.
(SBPvar)

Given ρt = φtφ̂t, the optimal control in SBPsoc can be obtained by ut = σ2∇ logφt.

5.B Stochastic Dynamics on Topological Domains
Compared to the Euclidean domain, the dynamics on topological domains are less studied.
Here we provide some existing work on the dynamics on graphs and simplicial complexes.
Note that our choice of the linear topological drift ft in (5.1) is analogous to the ideas in
[Archambeau et al., 2007; Verma et al., 2024] which considered linear SDEs to approximate
nonlinear dynamics, enabling approximations of more complex topological dynamics.

5.B.1 Preliminaries on (Stochastic) Differential Eqations
We are involved with differential equations in this work. In the following, we review some
results on ordinary differential equations (ODEs) and SDEs which are required later.

on ODEs

Given an initial solution x0 ∈ Rn, consider a linear differential system of the form
dxt =Atxt dt (linear ODE)

with At a time-varying matrix. To solve this system in closed-form, we require an ex-
pression for the state transition matrix Ψ(t,s) which transforms the solution at s to t,
xt = Ψ(t,s)xs. For the general case, the closed-form of Ψ(t,s) is not possible. In the
following, we introduce an important class of matrices At for which a closed-form solution
is possible [Antsaklis & Michel, 1997].
Lemma 5.14 (Closed-form of the transition matrix of a linear ODE). Given a linear ODE,
if for every s, t≥ 0, we have

At

[∫ t

s
Aτ dτ

]
=
[∫ t

s
Aτ dτ

]
At, (5.17)
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then the transition matrix is given by

Ψ(t,s) = exp
(∫ t

s
Aτ dτ

)
:= I+

∫ t

s
Aτ dτ + 1

2!

(∫ t

s
Aτ dτ

)2
+ . . . . (5.18)

For the scalar case, or when At is diagonal, or for At =A, (5.17) is always true.
Lemma 5.15. For At ∈ C[R,Rn×n], (5.17) is true if and only if AtAs =AsAt for all s, t.

Lemma 5.16 (Integration of matrix exponential). For a nonsingular matrix A, we have∫ t

s
exp(Aτ)dτ =

[
exp(At)− exp(As)

]
A−1. (5.19)

On SDEs

Lemma 5.17 (Itô isometry, Oksendal [2013]). LetW : [0,1]×X → R denote the canonical
real-valued Wiener process defined up to time 1, and let X : [0,1]×X → R be a stochastic
process that is adapted to the filtration generated byW 1. Then

E

[(∫ t

s
Xt dWt

)2]
= E

[∫ t

s
X2

t dt
]
, (5.20)

and

E

[(∫ t

0
Xt dWt

)(∫ t

0
Yt dWt

)]
= E

[∫ t

0
XtYt dt

]
. (5.21)

This corollary allows us to compute the covariance of two stochastic processes Xt and Yt that
are adapted to the same filtration.

Transition densities of SDEs All Itô processes, that is, solutions to Itô SDEs, are
Markov processes. This means that all Itô processes are, in a probabilistic sense, completely
characterized by the transition densities (from xs at time s to xt at time t, denoted by
pt|s(xt|xs)≡ p(xs,s;xt, t)). The transition density is also a solution to the FPK equation
with a degenerate (Dirac delta) initial density concentrated on xs at time s. We refer to
Särkkä & Solin [2019, Thm 5.10].

5.B.2 Transition Densities of T SDE
T SDE First, we can find the transition matrix of the associated ODE to T SDE.
Lemma 5.18. For an ODE dyt =Ht(L)yt dt, the transition matrix is given by

Ψ(t,s) =: Ψts = exp
(∫ t

s
Hτ dτ

)
= I+

∞∑
k=0

1
k!

(∫ t

s
Hτ dτ

)k

(transition matrix)

with yt = Ψtsys. Note that Ψts is symmetric since Ht is a function of the symmetric L.
1An adapted process with respect to a Brownian motion is a stochastic process that only uses information from
the past and present, never the future, of the Brownian motion.
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This is a direct result from Lemmas 5.14 and 5.15 since HtHτ =HτHt for all t,τ . By the
definition of matrix integral, the computation of Ψts is given by

Ψ(t,τ) = exp(H̃t,τ (L)) = exp
( K∑

k=0
h̃t,τ

k Lk

)
(5.22)

where h̃t,τ
k =

∫ t
τ hk,s ds are the integral of the scalar coefficients in Ht. In the following,

we characterize the transition densities of the T SDE, as well as the three concrete examples
in Examples 5.1 to 5.3. Then, using the formulas in Särkkä & Solin [2019, Eq. 6.7], we can
compute the statistics of the transition kernel.

The following two lemmas compose Lemma 5.4.
Lemma 5.19. The transition density pt|s(yt|ys) of the T SDE conditioned on Ys = ys is
Gaussian

pt|s(yt|ys)∼N (yt;mt|s,Kt|s) (5.23)
with the mean and covariance, for t≥ s, as follows

mt|s = Ψtsys +Ψt

∫ t

s
Ψ−1

τ ατ dτ, Kt|s = Ψt

(∫ t

s
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t .

Proof. Given the transition matrix, using the transition kernel formula in Särkkä & Solin
[2019, Eq. 6.7], we have

mt|s = Ψtsys +
∫ t

s
Ψtτατ dτ = Ψtsys +Ψt

∫ t

s
Ψ−1

τ ατ dτ,

where we use the property Ψtτ = ΨtΨ−1
τ . Likewise, we have

Kt|s =
∫ t

s
g2

τ Ψtτ Ψ⊤
tτ dτ = Ψt

(∫ t

s
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t .

□

Lemma 5.20. Conditioned on Y0 = y0, the cross covarianceK(t1, t2) of T SDE at t1, t2 is
given by

Kt1,t2 = Ψt1

(∫ min{t1,t2}

0
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t2 .

Proof. This can be obtained by applying the cross covariance function in Särkkä & Solin
[2019, Sec 6.4].

Kt1,t2 = Cov[Yt1 ,Yt2 |Y0] = E
[(∫ t1

0
gτ1Ψt1,τ1 dWτ1

)(∫ t2

0
gτ2Ψt2,τ2 dWτ2

)⊤]
=
∫ min{t1,t2}

0
g2

τ Ψt1,τ Ψ⊤
t2,τ dτ (by Lemma 5.17 (Ito’s isometry))

= Ψt1

(∫ min{t1,t2}

0
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t2 . (by Ψt,τ = ΨtΨ−1
τ )

□
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T SHeatBM Given an initial sample y0 of the random topological signal Y0, consider the
SDE:

dYt =−cLYt dt+gdWt. (T SHeatBM)

Its steady-state (by setting t→∞) distribution has zero mean and covariance matrix
Σ = g2

2cL
−1. Note that when L is singular, we consider a perturbed version L+ ϵI with a

small constant ϵ > 0. The transition matrix of the associated ODE dYt =−cLYt dt is given
by

Ψts = exp(−c(t−s)L) . (5.24)

Lemma 5.21. The transition density pt|s(yt|ys) of the T SHeatBM conditioned on Ys = ys is
Gaussian with the mean and covariance, for t≥ s, as follows

mt|s = Ψtsys, Kt|s = g2

2c
[
I− exp(−2cL(t−s))

]
L−1.

Moreover, the conditional dynamics Yt|Y0 = y0 has the covariance process at t1, t2 as

Kt1,t2 = g2

2c

[
exp(−cL|t2− t1|)− exp(−cL(t1 + t2))

]
L−1. (5.25)

Proof. For the conditional mean, we can obtain it directly from the transition matrix of the
associated ODE. For the conditional covariance, we have

Kt|s =
∫ t

s
Ψ(t,τ)g2Ψ(t,τ)⊤ dτ = Ψt

(∫ t

s
Ψ−2

τ g2 dτ
)

Ψ⊤
t

= g2Ψt

(∫ t

s
exp(2cLτ)dτ

)
Ψ⊤

t (by Ψ−2
τ = exp(2cLτ))

= g2

2cΨt

[
exp(2cLt)− exp(2cLs)

]
L−1Ψ⊤

t (by Lemma 5.16)

= g2

2c
[
I− exp(−2cL(t−s))

]
L−1. (Ψt = exp(−cLt))

To compute the covariance process of the conditional dynamics Yt|Y0 = y0, by definition,
we have, for t1 ≤ t2

Kt1,t2 = Cov[Yt1 ,Yt2 |Y0] = Ψt1

(∫ t1

0
g2Ψ−2

τ dτ
)

Ψ⊤
t2 (by Lemma 5.4)

= g2Ψt1

[∫ t1

0
exp(2cLτ)dτ

]
Ψ⊤

t2 (by Ψ−2
τ = exp(2cLτ))

= g2Ψt1

[
1
2c
[
exp(2cLt1)− I

]]
L−1Ψ⊤

t2 (by Lemma 5.16)

= g2

2c
[
exp(−cL(t2− t1))− exp(−cL(t1 + t2))

]
L−1.

The case of t1 > t2 can be similarly derived, which completes the proof. □
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T SHeatVE
Lemma5.22. The Gaussian transition kernel p(t|s) of T SHeatVE has themean and covariance

mt|s = Ψtsys, Kt|s = σ2
min ln

(
σmax
σmin

)
exp(−2cLt)

[
exp(2At)− exp(2As)

]
A−1

(5.26)
where Ψts is the same as (5.24) and A= ln

(
σmax
σmin

)
I+ cL. The cross covariance between Yt

and Ys, conditioned on Y0, is given by

Kt1,t2 = σ2
min ln

(
σmax
σmin

)
exp(−cL(t1 + t2))[exp(2Amin{t1, t2})− I]A−1. (5.27)

Proof. As the associated ODE of T SHeatVE is also a topological heat diffusion, the transition
matrix is the same as Ψts = exp(−cL(t−s)) for T SHeatBM. By substituting σ(t) into gt,
we can find that

gt = σmin

(
σmax
σmin

)t
√

2ln
(
σmax
σmin

)
. (5.28)

For the covariance of the transition density, we have

Kt|s = Ψt

(∫ t

s
g2

τ Ψ−2
τ dτ

)
Ψ⊤

t

for which, we need to compute the integral∫ t

s
g2

τ Ψ−2
τ dτ =

∫ t

s
σ2

min

(
σmax
σmin

)2τ

2ln
(
σmax
σmin

)
exp(2cLτ)dτ

=2σ2
min ln

(
σmax
σmin

)[∫ t

s

(
σmax
σmin

)2τ

exp(2cLτ)dτ
]

(factor out the constant)

=2σ2
min ln

(
σmax
σmin

)∫ t

s
exp
[
2τ ln

(
σmax
σmin

)]
exp(2cLτ)dτ

(by the identity exp(lnx) = x)

=2σ2
min ln

(
σmax
σmin

)∫ t

s
exp(2τA)dτ (by A= ln(σmax/σmin)I+ cL)

=σ2
min ln

(
σmax
σmin

)
(exp(2At)− exp(2As))A−1. (by Lemma 5.16)

Thus, we have

Kt|s = σ2
min ln

(
σmax
σmin

)
exp(−2cLt)

[
exp(2At)− exp(2As)

]
A−1.

For the cross covariance, assuming t1 ≤ t2, then we can find the covariance kernel as

Kt1,t2 = Cov[Yt1 ,Yt2 |Y0] = Ψt1

[∫ t1

0
g2

τ Ψ−2
τ dτ

]
Ψ⊤

t2 (by Lemma 5.4)
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= Ψt1

[∫ t1

0
σ2

min

(
σmax
σmin

)2τ

2ln
(
σmax
σmin

)
exp(2cLτ)dτ

]
Ψ⊤

t2

(since Ψ−2
τ = exp(2cLτ))

= σ2
min ln

(
σmax
σmin

)
Ψt1

[
exp(2At1)− I

]
A−1Ψ⊤

t2 (using the same steps as above)

= σ2
min ln

(
σmax
σmin

)
exp(−cL(t1 + t2))[exp(2At1)− I]A−1.

The similar steps can be followed for t1 > t2, which completes the proof. □

T SHeatVP For this stochastic process, a closed-form transition kernel cannot be found.
Yet, we could proceed the following for numerical computations. First, we can find the
closed-form transition matrix of the associated ODE as

Ψts = exp
(∫ t

s
−
(1

2β(τ)I+ cL
)

dτ
)

= exp
(
− cL(t−s)− 1

2

∫ t

s
β(τ)dτ

)
(5.29)

where the integral can be easily obtained as∫ t

s
β(τ)dτ =

[
1
2τ

2(βmax−βmin)+ τβmin

]t

s

=: β̃ts. (5.30)

This allows to compute the mean of the transition kernelmt|s given an initial solution ys.
For the covariance kernel, we have

Kt|s = Ψt

(∫ t

s
β(τ)Ψ−2

τ dτ
)

Ψ⊤
t

where the integral can be expressed as∫ t

s
β(τ)Ψ−2

τ dτ =
∫ t

s

(
τ(βmax−βmin)+βmin

)
exp
(

2cLτ + β̃τ0

)
dτ

=
[(
τ(βmax−βmin)+βmin

)
v(τ)

]∣∣∣∣t
s

− (βmax−βmin)
∫ s

0
v(τ)dτ

(integration by parts)

Here, we denote v(τ) =
∫

exp
(
2cLτ + β̃τ0

)
dτ , thus v′(τ) := exp

(
2cLτ + β̃τ0

)
, which

does not have a simple closed-form, we need to compute it numerically. This gives the
covariance kernel. Following the similar procedures, we can compute the cross covariance
Kt1,t2 of the conditional process Yt|Y0 = y0.

5.B.3 Other Topological Dynamics
We may consider fractional Laplacian in T SHeat which allows for a more efficient explo-
ration of the network [Riascos & Mateos, 2014] due to its non-local nature.
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For T SHeat, we can further allow heterogeneous heat diffusion on the edge space as follows

dYt =−(c1Ld + c2Lu)Yt dt+gt dWt, (5.31)

by settingHt =−(c1Ld +c2Lu), with c1, c2 > 0. Here, the diffusion rates are different for
the different edge-adajcency types encoded in Ld and Lu. This in fact can be generalized
to using a more general topological convolution operator, if L := Ld +Lu consists of the
down and up parts,

Ht =
K1∑
k=0

h1
k(t)Lk

d +
K2∑
k=0

h2
k(t)Lk

u (5.32)

where h1
k(t),h2

k(t) are the coefficients of the topological convolution. We refer to Yang
et al. [2022b] for more details on its expressive power compared to T SDE.

Beyond T SDE: Instead of first-order dynamics, we can use higher-order dynamics such as
wave equations. Graph wave equations [Chung et al., 2007] have been used for building
more expressive graph neural networks [Poli et al., 2021] and its stochastic variant for
modeling graph-time GPs [Nikitin et al., 2022]. Moreover, we may allow the interactions
between node and edge signals in which the dynamics is defined over the direct sum of
the two spaces. While not considered in this work, we refer to [Alain et al., 2024] for such
cases to define topological GPs on SCs.

5.C Towards the Optimality of Topological SBP
Proposition 5.23 (T -Schrödinger System; [Chen et al., 2016; Jamison, 1975]). The optimal
solution of T SBPstatic has the form P01 =

∫
Rn×Rn φ̂0(x0)p1|0(x1|x0)φ1(x1)dx0 dx1 with

φ and φ̂ satisfying the system

φt(xt) =
∫
Rn
p1|t(x1|xt)φ1(x1)dx1, φ̂t(xt) =

∫
Rn
pt|0(xt|x0)φ̂0(x0)dx0 (5.33)

where pt|s(y|x) =N (y;µt|s,Kt|s) is the Gaussian transition density [cf. Lemma 5.19] of
T SDE with drift in (5.1). Moreover, the time-marginal at t can be factored as Pt(x) =
φt(x)φ̂t(x).

Proof. This is a direct result of the Schrödinger system in Theorem 5.13 by replacing the
Markov kernel by that [cf. Lemma 5.19] of the T SDE. □

From this system, we see that the optimal path measure has its marginal Pt factorized into
two time-marginals φt and φ̂t, which are both governed by the T SDE.

5.C.1 Variational Formulations of T SBP
By Girsanov’s theorem, the T SBP can be formulated as the minimum energy SOC problem:

min
bt

E

[
1
2

∫ 1

0
∥b(t,Xt)∥2 dt

]
, s.t.

{
dXt = [ft +gtb(t,Xt)]dt+gt dWt

X0 ∼ ν0,X0 ∼ ν1
(T SBPsoc)
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where bt ≡ b(t,Xt) is the control function. The SDE constraint in T SBPsoc is also known
as the controlled SDE, in comparison to the uncontrolled reference T SDE. It further leads
to the variational problem

min
(bt,νt)

1
2

∫ 1

0

∫
Rn
∥bt∥2ν(t,x)dxdt, s.t.

{
∂tνt +∇· [νt(ft +gtbt)] = 1

2g
2
t ∆νt

ν(0,x) = ν0,ν(1,x) = ν1
(T SBPvar)

where νt ≡ ν(t,x)≡ Pt is the time-marginal of P and follows some PDE constraint, which
is the FPK equation of the SDE constraint in T SBPsoc.
Theorem 5.24 (T SBP Optimality; Caluya & Halder [2021]; Léonard [2014]). Assume2 that
g(t) is uniformly lower-bounded and f(t,x;L) satisfies Lipschitz conditions with at most
linear growth in x. Let φt ≡ φ(t,x) and φ̂t ≡ φ̂(t,x) be the solutions to the pair of PDEs{

∂tφt =−(∇φt)⊤ft− 1
2g

2
t ∆φt

∂tφ̂t =−∇· (φ̂tft)+ 1
2g

2
t ∆φ̂t,

s.t. φ(0, ·)φ̂(0, ·) = ν0,φ(1, ·)φ̂(1, ·) = ν1. (5.34)

Then, the optimal control in T SBPvar is b⋆
t = g2

t∇ logφt and the optimal path measure is
νt = Pt = φtφ̂t. Moreover, the solution to T SBP can be represented by the path measure of
the following coupled ( forward-backward) T SDEs

dXt = [ft +g2
t∇ logφ(t,Xt)]dt+gt dWt, X0 ∼ ν0, (5.35a)

dXt = [ft−g2
t∇ log φ̂(t,Xt)]dt+gt dWt, X1 ∼ ν1, (5.35b)

where∇ logφ(t,Xt) and∇ log φ̂(t,Xt) are the forward and backward optimal drifts, respec-
tively.

Proof. The proof is an adaption of Caluya & Halder [2021] to the topological setting by
specifying the topology-aware drift in 5.1. From the first oprder optimality conditions for
the SOC formulation T SBPvar, we can obtain a coupled system of nonlinear PDEs for ψt

(the potential function of bt, i.e., bt = ∇ψt) and νt, which are known as the Hamilton-
Jacobi-Bellman (HJB) and FPK equations, respectively, as well as the optimal control
b⋆

t = g2
t∇ logφt. Via the Hopf-Cole transform, this system returns (5.34) [Caluya & Halder,

2021, Thm 2]. Then, by substituting the optimal control into the constraint in T SBPsoc, one
can obtain the forward SDE, and the backward SDE can be derived from the time-reversal
of the forward SDE [Anderson, 1982; Nelson, 2020]. □

Using nonlinear Feynman-Kac formula (or applying Itô’s formula on logφt and log φ̂t), the
PDE system (5.34) admits the SDEs [Chen et al., 2022b]

dlogφt = 1
2∥Zt∥2 dt+Z⊤

t dWt, (5.36)

dlog φ̂t =
(

1
2∥Ẑt∥2 +∇· (gtẐt−ft)+ Ẑ⊤

t Zt

)
dt+ Ẑ⊤

t dWt (5.37)

where Zt ≡ gt∇ logφt(Xt) and Ẑt ≡ gt∇ log φ̂t(Xt). This results in Proposition 5.5.
2The nonexplosive Lipschitz condition on ft rules out the finite-time blow up of the sample paths of the SDE, and
ensures the existance and uniqueness of the solutions. It, together with the uniformly lower-bounded diffusion
gt, guarantees the transition kernel pt|s is positive and everwhere continuous [Särkkä & Solin, 2019].
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5.C.2 Wasserstein Gradient Flow Interpretation
The gradient flow of a funcitional over the space of probability measures with Wasserstein
metric, i.e., the Wasserstein gradient flow (WGF), is fundamentally linked to FPK equations
[Ambrosio et al., 2008; Otto, 2001]. In the following, we show that solving the T SBP with
T SHeatBM reference amounts to solving the WGF of some functional on a probability
measure ν.
Theorem 5.25. Consider the T SBPvar with the reference process T SHeat. The SB optimality
[cf. (5.34)] respects a pair of FPK equations of the form

∂tφ̂t(x) =∇· (cLxφ̂t(x))+ 1
2g

2∆φ̂t(x), φ̂0(x) = φ̂0(x) (5.38a)

∂tρt(x) =∇· (cLxρt(x))+ 1
2g

2∆ρt(x), ρ0(x) = φ1(x)exp(2cx⊤Lx/g2) (5.38b)

Therefore, the Wasserstein gradient flow of F(v) recovers the paired PDE in solving T SBPvar

F(ν) = c

∫
Rn

1
2x

⊤Lx ·ν(x)dx+ 1
2g

2
∫
Rn
ν logν dx := cEν [D(x)]+ 1

2g
2S(ν) (5.39)

where D(x) = 1
2x

⊤Lx is the Dirichlet energy of x and S(ν) is the negative differential
entropy.

Proof. First, from Theorem 5.24, we have the PDE system in (5.34) which can be rewritten
as the pair of PDEs in (5.38) by applying Caluya & Halder [2021, Thm 3]. Both PDEs are of
the following FPK form with V (x) := 1

2cx
⊤Lx on some density pt

∂tpt(x) =∇· (pt(x)∇V (x))+ 1
2g

2∆pt(x), (5.40)

for some initial condition. We can view V (x) as the potential energy of some function
ft(x). Here, we have ft(x) = −cLxt = −∇V (x). Then, from the seminal work Jordan
et al. [1998], the flows generated by the PDEs in (5.38) (both of the FPK form) can be seen
as the gradient descent of the Lyapunov functional F(·) in the following form

F(·) = c

∫
Rn

1
2x

⊤Lx · (·)dx+ 1
2g

2
∫
Rn

(·) log(·)dx := cE(·)[D(x)]+ 1
2g

2S(·) (5.41)

with respect to the 2-Wasserstein distance in the space P2(Rn) of probability measures on
Rn with finite second moments. Here, (·) can be φ̂t or pt. □

We note that it is also possible to obtain the associated functional for the T SBP with more
general reference T SDE based on the similar argument, but it would be more involved and
lead to a time-dependent functional [Ferreira & Valencia-Guevara, 2018].
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5.D Theclosed-formofGaussianTopological Schrödinger
Bridges [Theorems 5.6 and 5.7] (Proofs and oth-
ers)

For convenience, we state the Gaussian T SBP

minDKL(P∥QT ), s.t. P ∈ P(Ω),ν0 =N (µ0,Σ0),ν1 =N (µ1,Σ1) (GT SBP)

and its static problem

minDKL(P01 ∥QT 01), s.t. P01 ∈ P(Rn×Rn),P0· = ν0,P·1 = ν1. (GT SBPstatic)

We also restate the main results of the Gaussian T SBP.
Theorem5.6. Denote by P the solution to GT SBPwith ν0 =N (µ0,Σ0) and ν1 =N (µ1,Σ1).
Then, P is the path measure of a Markov Gaussian process whose marginal Xt ∼N (µt,Σt)
admits an expression in terms of the initial and final variables, X0,X1, as follows

Xt = R̄tX0 +RtX1 + ξt−Rtξ1 +ΓtZ (5.5)

where Z ∼N (0, I) is standard Gaussian, independent of (X0,X1), and we have

Rt =Kt1K
−1
11 , R̄t = Ψt−RtΨ1,

Γt := Cov[Yt|(Y0,Y1)] =Ktt−Kt1K
−1
11 K1t.

(5.6)

Corollary 5.26 (Marginal Statistics). The time marginal variable Xt in (5.5) of the optimal
solution to GT SBP has the mean and covariance as follows

µt = R̄tµ0 +Rtµ1 + ξt−Rtξ1, (5.42a)

Σt = R̄tΣ0R̄
⊤
t +RtΣ1R

⊤
t + R̄tCR

⊤
t +RtC

⊤R̄⊤
t +Γt, (5.42b)

where C = Ψ−1
1 K

1/2
11 C̃K

1/2
11 with

C̃ = 1
2(Σ̃1/2

0 D̃Σ̃−1/2
0 − I), D̃ = (4Σ̃1/2

0 Σ̃1Σ̃1/2
0 + I)1/2,

Σ̃0 =K
−1/2
11 Ψ1Σ0Ψ⊤

1 K
−1/2
11 , Σ̃1 =K

−1/2
11 Σ1K

−1/2
11 .

(5.43)

Theorem 5.7 (SDE representation). Under the optimal P, the process X admits the SDE
dynamics:

dXt = fT (t,Xt;L)dt+gt dWt, where

fT (t,x;L) = S⊤
t Σ−1

t (x−µt)+ µ̇t

(5.7)

with µt,Σt the mean and covariance of Xt [cf. Corollary 5.26] and we have

St = Pt−Q⊤
t +HtKtt−Kt1K

−1
11 Υ⊤

t , (5.8)

withPt = (RtΣ1 +R̄tC)Ṙ⊤
t ,Qt =− ˙̄Rt(CR⊤

t +Σ0R̄
⊤
t ),Υt =HtKt1 +g2

t Ψ−1
t Ψ⊤

1 , where
C is the covariance ofX0,X1 in the optimal P01, and Ṙt,

˙̄Rt are the time-derivatives ofRt, R̄t.
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5.D.1 Preliminaries for the proof
We first introduce the following three lemmas and the definition of infinitesimal generators.

Lemma 5.27 (Central identity of Quantum Field Theory [Zee, 2010]). For all matrixM ≻ 0
and all sufficiently regular analytical function v (e.g., polynomials or v ∈ C∞(Rd) with
compact support), we have

(2π)− d
2 (detM)− 1

2

∫
Rd
v(x)exp

(
−1

2x
⊤Mx

)
dx= exp

(
1
2∂

⊤
x M

−1∂x

)
v(x)

∣∣∣∣
x=0
(5.44)

where exp(D) = I+D+ 1
2D

2 + · · · , for a differential operator D.

Lemma 5.28 (Conditional Gaussians). Let (Y0,Y1) ∼ N
([
µ0
µ1

]
,

[
Σ00 Σ01
Σ10 Σ11

])
. Then,

Y0|Y1 = y is Gaussian with

E[Y0|Y1 = y] =µ0 +Σ01Σ−1
11 (y−µ1), and Cov(Y0|Y1 = y) = Σ00−Σ01Σ−1

11 Σ10. (5.45)

Definition 5.29 (Infinitesimal generator of a stochastic process). For a sufficiently regular
time-dependent function ϕ(t,x)∈R+×Rn→R, the infinitesimal generator of a stochastic
process Xt for ϕ(t,x) can be defined as

Atϕ(t,x) = lim
h→0

E[ϕ(t+h,Xt+h)|Xt = x]−ϕ(t,x)
h

. (5.46)

For an Itô process defined as the solution to the SDE

dXt = f(t,Xt)dt+g(t,Xt)dWt, (5.47)

with f(t,x),g(t,x) : R+×Rn→ Rn, the generator is given as

Atϕ(t,x) = ∂tϕ(t,x)+f(t,x)⊤∇xϕ(t,x)+ 1
2 Tr[g(t,x)g(t,x)⊤∆ϕ(t,x)] (5.48)

where ∆ :=∇2
x is the Euclidean Laplacian operator.

5.D.2 Outline of the proof
Our proofs follow the idea from Bunne et al. [2023, Theorem 3].

For Theorem 5.6. We follow the following two steps:
1. We first solve the associated static GT SBP. Specifically, we formulate the equivalent
E-OT problem, which has the transport cost dependent on the transition kernel of the
T SDE. By introducing new variables, we can convert this involved transport cost to a
quadratic cost over new variables, thus, converting the GT SBPstatic to a classical Gaussian
E-OT. Based on the existing results [Janati et al., 2020; Mallasto et al., 2022], we can then
obtain the optimal coupling over the transformed variables. The coupling over the original
variables can be recovered via an inverse transform.
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2. From Theorem 5.11, we can obtain the solution of GT SBP based on that the optimal P
is in the reciprocal class of QT , specifically, by composing the static solution with the QT -
bridge. This is an optimality condition obtained from the reduction to the static problem.
From that, we know that the solution P is a Markov Gaussian process and shares the same
bridge as QT [cf. Proposition 5.12]. This further allows us to characterize the mean and
covariance of the time-marginal.
For Theorem 5.7. Let P ∈ P(Ω) be a finite-energy diffusion [Föllmer & Wakolbinger,
1986]; that is, under P, the canonical processX has a (forward) Itô differential. Furthermore,
since P is in the reciprocal class of QT , it has the SDE representation in the class of (5.7)
from the SOC formulation where the drift fT (t,x :L) is to be determined. We then proceed
the following two steps:
1. For the SDE (5.7) of the optimal processXt, we first compute its infinitesimal generator
[Protter, 2005] for a test function ϕ(t,x) ∈ R+×Rn→ R by definition using (5.46).
2. Second, we express the generator in terms of its given solution in (5.48) for the SDE

(5.7)
Atϕ(t,x) = ∂tϕ(t,x)+f⊤

T ∇xϕ(t,x)+ 1
2g

2
t∇2

xϕ(t,x). (5.49)

By matching the generators computed in both ways, we then obtain the closed-form of the
drift term.

5.D.3 Detailed proof of Theorem 5.6

Step 1: Solve GT SBPstatic

First, recall that Yt|Y0 = y0 is a Gaussian process with meanmt :=E(Yt|y0) and covariance
Ktt [cf. cond. mean and cond. cross cov], respectively. Thus, we have the transition
probability density

QT 1|0(y1|y0)∝ exp
(
−1

2(y1−Ψ1y0− ξ1)⊤K−1
11 (y1−Ψ1y0− ξ1)

)
∝ exp

(
−1

2(y1−m1)⊤K−1
11 (y1−m1)

)
.

(5.50)

By introcuding the variables Ỹ0 =K
− 1

2
11 (Ψ1Y0 + ξ1) and Ỹ1 =K

− 1
2

11 Y1, we have

QT 1|0(y1|y0)∝ exp
(
−1

2∥ỹ1− ỹ0∥2
)
. (5.51)

Furthermore, if the joint distribution P01 has marginals Y0 ∼ ν0 and Y1 ∼ ν1, then after
the change of variables (Y0→ Ỹ0 and Y1→ Ỹ1), it gives rise to a joint distribution P̃01
with marginals Ỹ0 ∼ ν̃0 =N (µ̃0, Σ̃0) and Ỹ1 ∼ ν̃1 =N (µ̃1, Σ̃1), where

µ̃0 =K
− 1

2
11 (Ψ1µ0 + ξ1), Σ̃0 =K

− 1
2

11 Ψ1Σ0Ψ⊤
1 K

− 1
2

11 ,

µ̃1 =K
− 1

2
11 µ1, Σ̃1 =K

− 1
2

11 Σ1K
− 1

2
11 .

(5.52)
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That is, there is an one-to-one correspondence between P01 and P̃01. This allows us to
expand the objective of GT SBPstatic in terms of minimization as follows

DKL(P01∥QT 01) =
∫
Rn×Rn

P01(y0,y1) log
(
P01(y0,y1)
QT 01(y0,y1)

)
dy0 dy1

=−
∫

log(QT 01(y0,y1))dP01(y0,y1)+
∫

log(P01)dP01

= 1
2

∫
∥ỹ1− ỹ0∥2 dP01(y0,y1)+

∫
log(P01)dP01 + const. 1 (⋆)

= 1
2

∫
∥ỹ1− ỹ0∥2 dP̃01(ỹ0, ỹ1)+

∫
log(P̃01)dP̃01 + const. 2

≡DKL(P̃01∥QT 01)

where the second last step results from
∫

log(P̃01)dP̃01 =
∫

log(P01)dP01 + const.. To
obtain (⋆), we notice that QT 01(y0,y1) = QT 1|0(y1|y0)QT 0(y0), and we have

−
∫

log(QT 01(y0,y1))dP01(y0,y1)

=−
∫

log(QT 1|0(y1|y0))dP01(y0,y1)−
∫

log(QT 0(y0))dP01(y0,y1)

=−
∫

log(QT 1|0(y1|y0))dP01(y0,y1)−
∫

logQT 0(y0)dP0(y0)

where the last equality holds since we can remove the dependence on y1 in the second
term by integrating over y1, thus, appearing as a constant in the optimization over P01.
Moreover, the expression (⋆) is in fact the equivalent E-OT associated to the T SBP

min
P01

1
2

∫
∥y1−Ψ1y0− ξ1∥2K−1

11
dP01(y0,y1)+

∫
log(P01)dP01. (T E-OT)

Note that by definitionwe haveDKL(P01∥ν0⊗ν1) =
∫

log(P01)dP01−
∫

log(ν0⊗ν1)dP01 =∫
log(P01)dP01−

∫
logν0 dν0−

∫
logν1 dν1 where the last two terms are constants.

Thus, solving GT SBPstatic is equivalent to solving the following problem

min
P̃01∈P(Rn×Rn)

DKL(P̃01∥QT 01)≡
∫ 1

2∥ỹ1− ỹ0∥2 dP̃01(ỹ0, ỹ1)+
∫

log(P̃01)dP̃01 (5.53)

with P̃0 = ν̃0 and P̃1 = ν̃1. This is a classical static Gaussian E-OT between ν̃0 and ν̃1 with
σ = 1. The closed-form solution is given by the joint Gaussian [cf. Theorem 5.8]

P̃⋆
01 =N

([
µ̃0
µ̃1

]
,

[
Σ̃0 C̃
C̃⊤ Σ̃1

])
(5.54)

where
C̃ = 1

2(Σ̃1/2
0 D̃Σ̃−1/2

0 − I), D̃ = (4Σ̃1/2
0 Σ̃1Σ̃1/2

0 + I)1/2. (5.55)
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Finally, via the inverse transforms Y0 = Ψ−1
1 (K

1
2
11ỹ0−ξ1) and Y1 =K

1
2
11ỹ1, we can obtain

the solution to the original problem GT SBPstatic as

P⋆
01 ∼N

([
µ0
µ1

]
,

[
Σ0 C
C⊤ Σ1

])
(GT SBstatic)

where C = Ψ−1
1 K

1
2
11C̃K

1
2
11.

Step 2: From static to dynamic via disintegration formula

From Theorem 5.11, we know that the solution P to GT SBP shares its bridges with the
reference QT . We denote by Qy0y1

T the process Y conditioning on Y0 = y0 and Y1 = y1
under QT , i.e., Y |y0,y1 ∼Qy0y1

T =QT [Y0 = y0,Y1 = y1]. It is the bridge of QT , following

QT (·) =
∫
Rn×Rn

Qy0y1
T (·)QT 01(dy0 dy1). (5.56)

In the classical case of Brownian motion Y = W ∼ QW , Qy0y1
W is often referred to as

the Brownian bridge. Here, we aim to first find the Qy0y1
T -bridge, and then construct the

optimal solution P⋆ by composing the static solution P⋆
01 with the Qy0y1

T -bridge [cf. ?? in
Theorem 5.11].

From the transition kernel in Lemma 5.4, we have the conditional distributions Yt|y0 ∼
N (mt,Ktt) and Y1|y0 ∼N (m1,K11). Thus, the joint distribution of Yt and Y1 given y0
follows

Yt,Y1|y0 ∼N
([

mt

m1

]
,

[
Ktt Kt1
K1t K11

])
. (5.57)

Applying Lemma 5.28, we know that Yt|y0,Y1 = y1 is Gaussian with mean

E(Yt|y0,Y1 = y1) =mt +Kt1K
−1
11 (y1−m1)

= Ψty0 + ξt +Kt1K
−1
11 (y1−Ψ1y0− ξ1)

= (Ψt−Kt1K
−1
11 Ψ1)y0 +Kt1K

−1
11 y1 + ξt−Kt1K

−1
11 ξ1

≜ R̄ty0 +Rty1 + ξt−Rtξ1

(5.58)

where we recall the definitions of Rt and R̄t in (5.8), and covariance

Γt := Cov(Yt|Y0 = y0,Y1 = y1) =Ktt−Kt1K
−1
11 K1t. (5.59)

Since a Gaussian process is completely determined by its mean and covariance, we have

Yt|Y0,Y1
law= R̄tY0 +RtY1 + ξt−Rtξ1 +ΓtZ ∼ Qy0y1

T t (5.60)

where Z ∼N (0, I) is independent of Yt. Now, the Disintegration of Measures and Theo-
rem 5.11 allow us to construct the solution to GT SBP by first generating (X0,X1)∼ P⋆

01



5.D The closed-form of Gaussian Topological Schrödinger Bridges [Theorems 5.6 and 5.7] (Proofs
and others)

5

159

in GT SBstatic, then connecting X0 and X1 using the Qy0y1
T -bridge. This is equivalent to,

for X0 ∼ ν0,X1 ∼ ν1 and Z ∼N (0, I),Z ⊥ (X0,X1), building a process as

Xt
law= R̄tX0 +RtX1 + ξt−Rtξ1 +ΓtZ ∼ P⋆

t , (5.61)

which in fact is a stochastic interpolant for stochastic processes over topological domains,
generalizing the same notion in Euclidean domains in Albergo et al. [2024, Definition 1].
Note that since QT is a stochastic process following an Itô SDE, which is a Markov process,
the solution P is also a Markov process [cf. Proposition 5.12]. Finally, we obtain the mean
and covariance of the time-marginal Xt as

µt = R̄tµ0 +Rtµ1 + ξt−Rtξ1,

Σt = R̄tΣ0R̄
⊤
t +RtΣ1R

⊤
t + R̄tCR

⊤
t +RtC

⊤R̄⊤
t +Ktt−Kt1K

−1
11 K1t.

(5.62)

This concludes the proofs of Theorem 5.6 and Corollary 5.26.

5.D.4 Detailed Proof of Theorem 5.7

Step 1: Compute the infinitesimal generator of Xt by definition

For some time-varying function ϕ(t,x), by definition, the infinitesimal generator of Xt is
given by (5.46). SinceXt is a Gaussian process, we could express the conditional expectation
using Lemma 5.28. As we are only interested in the terms that are of order O(h), we then
ignore the higher-order terms. First, we compute the first-order approximation of Σt in
(5.42)

Σ̇t = ˙̄RtΣ0R̄
⊤
t + R̄tΣ0

˙̄R⊤
t + ṘtΣ1R

⊤
t +RtΣ1Ṙ

⊤
t

+ ˙̄RtCR
⊤
t + R̄tCṘ

⊤
t + ṘtC

⊤R̄⊤
t +RtC

⊤ ˙̄R⊤
t

+∂tKtt− (∂tKt1)K−1
11 K1t− (Kt1K

−1
11 )∂tK1t

≜ (P⊤
t +Pt)− (Qt +Q⊤

t )+∂tKtt− (∂tKt1)K−1
11 K1t− (Kt1K

−1
11 )∂tK1t

(5.63)

where at the last equality we recall the definitions of Pt and Qt in (5.8). Next, denote by
Σt,t+h the covariance process of Xt evaluated at t and t+h. We can estimate Σt,t+h up
to the first order of o(h) as

Σt,t+h :=E[(Xt−µt)(Xt+h−µt+h)⊤]
=R̄tΣ0R̄

⊤
t+h +RtΣ1R

⊤
t+h + R̄tCR

⊤
t+h +RtC

⊤R̄⊤
t+h +Kt,t+h−Kt1K

−1
11 K1,t+h

=Σt + R̄tΣ0(R̄t+h− R̄t)⊤ +RtΣ1(Rt+h−Rt)⊤ + R̄tC(Rt+h−Rt)⊤

+RtC
⊤(R̄t+h− R̄t)⊤ +(Kt,t+h−Ktt)−Kt1K

−1
11 (K1,t+h−K1t)

(a)= Σt +h(R̄tΣ0
˙̄R⊤

t +RtΣ1Ṙ
⊤
t + R̄tCṘ

⊤
t +RtC

⊤ ˙̄R⊤
t )+o(h)

+(Kt,t+h−Ktt)−Kt1K
−1
11 (K1,t+h−K1t)

(b)= Σt +h(Pt−Q⊤
t +∂t2Kt1,t2 |t1=t,t2=t−Kt1K

−1
11 ∂t2Kt1,t2 |t1=1,t2=t)+o(h)

(5.64)
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where we obtain (a) by plugging in limh→0
1
h (Rt+h−Rt) = Ṙt and limh→0

1
h (R̄t+h−

R̄t); and likewise, we obtain (b) by recognizing the definitions of Pt and Q⊤
t in (5.8) and

using the partial derivatives

lim
h→0

1
h

(Kt,t+h−Kt,t) = ∂t2Kt1,t2 |t1=t,t2=t, t1 ≤ t2

lim
h→0

1
h

(K1,t+h−K1,t) = ∂t2Kt1,t2 |t1=1,t2=t = ∂tK1t, t1 > t2.
(5.65)

Following the similar procedure, we can obtain a first-order approximation of Σt+h,t as

Σt+h,t :=E[(Xt+h−µt+h)(Xt−µt)⊤]

=Σt +h( ˙̄RtΣ0R̄
⊤
t + ṘtΣ1R

⊤
t + ˙̄RtCR

⊤
t + ṘtCR̄

⊤
t )+o(h)

+(Kt+h,t−Ktt)− (Kt+h,1−Kt1)K−1
11 K1t

=Σt +h(P⊤
t −Qt +∂t1Kt1,t2 |t1=t,t2=t−∂t1Kt1,t2 |t1=t,t2=1K

−1
11 K1t)+o(h),

(5.66)
where the partial derivatives should be understood as

lim
h→0

1
h

(Kt+h,t−Kt,t) = ∂t1Kt1,t2 |t1=t,t2=t, t1 > t2

lim
h→0

1
h

(Kt+h,1−Kt,1) = ∂t1Kt1,t2 |t1=t,t2=1 = ∂tKt1, t1 ≤ t2.
(5.67)

Since Eqs. (5.63), (5.64) and (5.66) are all involved with the partial derivatives ofKt1,t2 , we
can compute them by the closed-form of the transition matrix as

∂t1Kt1,t2 = ∂t1

{
Ψt1

[∫ t1

0
g2

sΨ−2
s ds

]
Ψ⊤

t2

}
, for t1 ≤ t2

(a)= Ψt1Ht1

[∫ t1

0
g2

sΨ−2
s ds

]
Ψ⊤

t2 +g2
t1Ψ−1

t1 Ψ⊤
t2

(b)= Ht1Kt1,t2 +g2
t1Ψ−1

t1 Ψ⊤
t2 , for t1 ≤ t2,

(5.68)

where we use the symmetry of Ψt. At (a) we use

∂tΨt = ∂t exp
(∫ t

0
Hs ds

)
= exp

(∫ t

0
Hs ds

)
Ht = ΨtHt, (5.69)

and at (b) we use the commutativity of Ht and Ψt [cf. Lemmas 5.14 and 5.18]. Similarly,
we have

∂t2Kt1,t2 = ∂t2

{
Ψt1

[∫ t1

0
g2

sΨ−2
s ds

]
Ψ⊤

t2

}
=Kt1,t2H

⊤
t2 , for t1 ≤ t2

∂t1Kt1,t2 = ∂t1

{
Ψt1

[∫ t2

0
g2

sΨ−2
s ds

]
Ψ⊤

t2

}
=Ht1Kt1,t2 , for t1 > t2

∂t2Kt1,t2 = ∂t2

{
Ψt1

[∫ t2

0
g2

sΨ−2
s ds

]
Ψ⊤

t2

}
= g2

t2Ψt1Ψ−1
t2 +Kt1,t2H

⊤
t2 , for t1 > t2.

(5.70)
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We notice that (∂tK1t)⊤ = ∂tKt1 = g2
t Ψ−1

t Ψ⊤
1 +HtKt1K

−1
11 K1t. Now, by introducing

in (5.64) the variable

S ≜ Pt−Q⊤
t +∂t2Kt1,t2 |t1=t,t2=t−Kt1K

−1
11 ∂t2Kt1,t2 |t1=1,t2=t

= Pt−Q⊤
t +KttH

⊤
t −Kt1K

−1
11 (g2

t Ψ1Ψ−1
t +K1tH

⊤
t )

= Pt−Q⊤
t +KttH

⊤
t −Kt1K

−1
11 (∂tK1t),

(5.71)

we can then express the covariance process as

Σt,t+h = Σt +hSt +o(h), (5.72)

and

Σt+h,t = Σt +h(P⊤
t −Qt +H⊤

t Ktt− (g2
t Ψ−1

t Ψ⊤
1 +HtKt1)K−1

11 K1t)+o(h)
= Σt +h(P⊤

t −Qt +H⊤
t Ktt− (∂tKt1)K−1

11 K1t)+o(h)
= Σt +hS⊤

t +o(h).
(5.73)

Lastly, using Lemma 5.28, we see tha variable Xt+h|Xt = x is a Gaussian process with
mean

µ̌t+h := = µt+h +Σt+h,tΣ−1
t (x−µt)

(a)= µt +hµ̇t +(Σt +hS⊤
t )Σ−1(x−µt)+o(h)

= µt +hµ̇t +(I+hS⊤
t Σ−1

t )(x−µt)+o(h)
= x+h(µ̇t +S⊤

t Σ−1
t (x−µt))+o(h)

(5.74)

where in (a) we used Σt = Σ⊤
t , and covariance

Σ̌t+h = Σt+h−Σt+h,tΣ−1
t Σt,t+h

= Σt +hΣ̇t− (Σt +hS⊤
t )Σ−1

t (Σt +hSt)+o(h)
= Σt +hΣ̇t− (Σt +hS⊤

t +hSt)+o(h)
(b)= h(Σ̇t−St−S⊤

t )+o(h).

(5.75)

By seeingKtt as a matrix function of t, we have

∂tKtt = ∂t

{
Ψt

[∫ t

0
g2

sΨ−2
s ds

]
Ψ⊤

t

}
=HtKtt +g2

t I+KttH
⊤
t . (5.76)

This reduces (5.63) to

Σ̇t = (P⊤
t +Pt)− (Qt +Q⊤

t )+∂tKtt− (∂tKt1)K−1
11 K1t− (Kt1K

−1
11 )∂tK1t (5.77)
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where the last two items appear in S⊤
t and St, respectively. Thus, we obtain

Σ̌t+h =h(Σ̇t−St−S⊤
t )+o(h)

=h
{[

(P⊤
t +Pt)− (Qt +Q⊤

t )+∂tKtt− (∂tKt1)K−1
11 K1t− (Kt1K

−1
11 )∂tK1t

]
−
[
Pt−Q⊤

t +KttH
⊤
t −Kt1K

−1
11 (∂tK1t)

]
−
[
P⊤

t −Qt +H⊤
t Ktt− (∂tKt1)K−1

11 K1t

]}
+o(h)

=hg2
t I+o(h).

(5.78)
We can now compute E[ϕ(t+h,Xt+h)|Xt = x] as follows

E[ϕ(t+h,Xt+h)|Xt = x]

= (2π)
d
2 (detΣ̌t+h)− 1

2

∫
Rn
ϕ(t+h,x′) · exp

(
−1

2(x′− µ̌t+h)⊤Σ̌−1
t+h(x′− µ̌t+h)

)
dx′

(a)= (2π)
d
2 (detΣ̌t+h)− 1

2

∫
Rn
ϕ(t+h, x̃+ µ̌t+h) · exp

(
−1

2 x̃
⊤Σ̌−1

t+hx̃
)

dx̃
(5.79)

where in (a) we apply a change-of-variable x̃ := x′− µ̌t+h. We further apply Lemma 5.27
and arrive at

E[ϕ(t+h,Xt+h)|Xt = x] = exp
(1

2∂
⊤
x̃ Σ̌t+h∂x̃

)
ϕ(t+h, x̃+ µ̌t+h)

∣∣∣
x̃=0

(a)=
(
I+ 1

2∂
⊤
x̃ Σ̌t+h∂x̃ +o(h.o.t.)

)
ϕ(t+h, x̃+ µ̌t+h)|x̃=0

(b)= ϕ(t+h, µ̌t+h)+ 1
2hg

2
t ∆ϕ(t+h, µ̌t+h)+o(h),

(5.80)
where we expand the power series of exp(1

2∂
⊤
x̃ Σ̌t+h∂x̃) and ignore the higher-order-terms

in (a), and plug in (5.78) in (b). Recalling µ̌t+h in (5.74), we can expand the Taylor series
of ϕ(t+h, µ̌t+h) in the second variabel at x as

ϕ(t+h, µ̌t+h) =ϕ
(
t+h,x+h(µ̇t +S⊤

t Σ−1
t (x−µt))

)
=ϕ(t+h,x)+h⟨∇ϕ(t+h,x), µ̇t +S⊤Σ−1

t (x−µt)⟩+o(h).
(5.81)

Therefore, we have
E[ϕ(t+h,Xt+h)|Xt = x] =

ϕ(t+h,x)+h⟨∇ϕ(t+h,x), µ̇t +S⊤Σ−1
t (x−µt)⟩+

1
2hg

2
t ∆ϕ(t+h,x)+o(h).

(5.82)

Now we can express the infinitesimal generator of Xt as

lim
h→0

E[ϕ(t+h,Xt+h)|Xt = x]−ϕ(t,x)
h

= lim
h→0

u(t+h,x)−u(t,x)
h

+ ⟨∇ϕ(t,x), µ̇t +S⊤Σ−1
t (x−µt)⟩+

1
2g

2
t ∆ϕ(t,x)

=∂tu(t,x)+ ⟨∇ϕ(t,x), µ̇t +S⊤Σ−1
t (x−µt)⟩+

1
2g

2
t ∆ϕ(t,x).

(5.83)
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Step 2: Match the solution of generator for an Itô SDE

From Caluya & Halder [2021]; Léonard [2014], we search for the optimal solution to T SBP
within the class of stochastic processes following an SDE:

dXt = fT (t,Xt)dt+gt dWt. (5.84)

Recalling the solution of an infinitesimal generator in (5.48) for this SDE

Atϕ(t,x) = ∂tϕ(t,x)+fT (t,x)⊤∇xϕ(t,x)+ 1
2g

2
t ∆ϕ(t,x), (5.85)

we then match it with the generator obtained by definition in (5.83). We observe that the
two are equivalent if we set

fT (t,x) = µ̇t +S⊤Σ−1
t (x−µt). (5.86)

This concludes the proof of Theorem 5.7.

5.D.5 Conditional Distribution of Xt|X0

Corollary 5.30 (Conditional distribution ofXt|X0). LetXt be the stochastic process associ-
ated to the solution P to GT SBP. Given an initial sample x0 ∼ ν0, the conditional distribution
ν(Xt|X0 = x0)∼N (µt|0,Σt|0) is Gaussian with

µt|0 = R̄tx0 +Rtµ1 +RtC
⊤Σ−1

0 (x0−µ0)+ ξt−Rtξ1,

Σt|0 =RtΣ1R
⊤
t −RtC

⊤Σ−1
0 CR⊤

t +Ktt−Kt1K
−1
11 K1t.

(5.87)

Similarly, given a final samplex1, the conditional distribution ν(Xt|X1 =x1)∼N (µt|1,Σt|1)
is Gaussian with

µt|1 =Rtx1 + R̄tµ0 + R̄tCΣ−1
1 (x1−µ1)+ ξt−Rtξ1,

Σt|1 = R̄tΣ0R̄
⊤
t − R̄tCΣ−1

1 C⊤R̄⊤
t +Ktt−Kt1K

−1
11 K1t.

(5.88)

Proof. First, recall the stochastic interpolant expression in (5.5) of the solution to GT SBP
and its mean µt and covariance Σt in (5.42). Due to the Gaussian nature of the process, we
can write the joint distribution of Xt and X0 as[

Xt

X0

]
∼N

([
µt

µ0

]
,

[
Σt Σt,0

Σ0,t Σ0

])
(5.89)

where we work out the covariance between Xt and X0 below

Σt,0 = E[(Xt−µt)(X0−µ0)⊤]
= R̄tΣ0 +RtCov(X1,X0)+Cov(ξt,X0)−RtCov(ξ1,X0)+Cov(ζt,X0)
= R̄tΣ0 +RtCov(X1,X0) (since ξt is deterministic, ζt ⊥X0)
= R̄tΣ0 +RtC

⊤. (by P∗
01 in GT SBstatic)
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Based on Lemma 5.28, we know thatXt|X0 = x0 is Gaussianwithmeanµt|0 and covariance
Σt|0 given by

µt|0 = µt +Σt,0Σ−1
0 (x0−µ0)

Σt|0 = Σt−Σt,0Σ−1
0 Σ0,t.

(5.90)

By substituting the expressions of µt and Σt from (5.42) and canceling out terms, we
complete the proof for Xt|X0 = x0. The proof for Xt|X1 = x1 follows similarly. □

5.E Topological SB Generative Models
Here, we provide more details on the T SB-based models. First, we give the likelihood of
the model which allows for the training objective in (5.9), and the probability flow ODEs
corresponding to the FB-T SDEs in (5.3). Then, we discuss the variants of score-based and
diffusion bridges models for topological signals, as well as their training objectives, with
the goal of illustrating how T SB-based models connect to these models.

5.E.1 Likelihood Training for Topological SBP
The likelihood for the Euclidean SBP by Chen et al. [2022b] extends to the topological case.
Corollary 5.31 (Likelihood for T SBmodels; Chen et al. [2022b]). Given the optimal solution
of T SBP satisfying the FB-T SDE system in (5.3), the log-likelihood of the T SB model at an
initial signal sample x0 can be expressed as

LT SB(x0) = E[logν1(X1)]−
∫ 1

0
E

[
1
2∥Zt∥2 + 1

2∥Ẑt∥2 +∇· (gtẐt−ft)+ Ẑ⊤
t Zt

]
dt

(5.91)
where the expectation is taken over the forward SDE in (5.3) with the initial conditionX0 = x0.

Corollary 5.32 (Probability flow ODE for T SB). The following ODE characterizes the
probability flow of the optimal processes of T SB in (5.3)

dXt =
[
ft +gtZt−

1
2gt(Zt + Ẑt)

]
dt (5.92)

and we have that for all t, Pt = p
(5.92)
t , i.e., the time marginal of the path measure P is equal

to the probability flow pt of this ODE.

This is a direct result from the probability flow for general SB [Chen et al., 2022b], which
extends the probability flow for score-based models [Song et al., 2020b], and relates to the
flow-based training.

5.E.2 Score Matching for Topological Signals
As discussed in Section 5.5 and by Chen et al. [2022b], SB-based models generalize the
score-based models [Song et al., 2020b]. Here, we provide a detailed derivation on how a
score-based model can be built for topological signals, specifically, on the score matching
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objective, since there is no direct literature on this. First, we show in detail that the
likelihood training based on (5.9b) returns a score matching objective for topological
signals when Zt = 0 and the final ν1 is a simple Gaussian. The backward training objective
in this case becomes

l(x0; θ̂) =
∫ 1

0
EXt∼(5.3a)

[
1
2∥Ẑ

θ̂
t ∥2 +gt∇· Ẑ θ̂

t

∣∣∣X0 = x0

]
dt

=
∫ 1

0
EXt∼(5.3a)

[
1
2g

2
t ∥st(θ̂)∥2 +g2

t∇·st(θ̂)
∣∣∣X0 = x0

]
dt

where we introduce a score function st(θ̂) to approximate∇ logpt|0(Xt|X0 = x0), follow-
ing Ẑ θ̂

t = gtst(θ̂). Here, pt|0 is the transition kernel of the T SDE [cf. Lemma 5.4]. By using
the trace estimator [Hutchinson, 1989] to compute the divergence, i.e.,

∇·st(θ̂) = Eu∼N (0,I)[u⊤st(θ̂)u], (5.93)

and setting the weighting function λ(t) := g2
t , we then obtain the sliced score matching

objective [Song et al., 2020a;b, Eq. 19] for topological signals based on T SDE, which has
the form

θ̂ = argminEt∼U(0,1)

{
λ(t)Ex0ExtEu∼N (0,I)

[
1
2∥st(θ̂)∥2 +u⊤st(θ̂)u

]}
, (5.94)

and is equivalent to l(x0; θ̂). This does not require a closed-form solution for the true
score function∇ logpt|0. The associated FB-T SDEs now become the forward-backward
processes for the score-based models

dXt = ft dt+gt dWt, (5.95)
dXt = (ft−g2

t st(θ̂))dt+gt dWt. (5.96)

Closed-form score matching For T SHeatBM and T SHeatVE, since we have their closed-
form transition kernels in (5.2), we can use the direct score matching objective [Song et al.,
2020b, Eq. 7] to train a score-based model for topological signals

θ̂ = argminEt∼U(0,1)

{
λ(t)Ex0Ext|x0

[
∥st(θ̂)−∇ logpt|0(xt|x0)∥2

]}
(5.97)

where∇ logpt|0 can be readily obtained based on (5.2).

5.E.3 Diffusion Bridges for Topological Signals
As discussed earlier, SBmodels are closely related to stochastic interpolants, flow- and score-
based models. We further remark that from the T SDE, we can build the topological diffusion
bridge to directly construct transport models between any topological distributions via
Doob’s h-transform [Särkkä & Solin, 2019]. This has been evidenced in Euclidean domains
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by converting existing diffusion processes (BM, VE, VP) to diffusion bridges so to arrive
at arbitrary distributions, and training upon score matching [Delbracio & Milanfar, 2023;
Heng et al., 2021; Li et al., 2023; Liu et al., 2022; Zhou et al., 2024].

Specifically, consider the T SDE. To let it arrive at a final sample x1, the Doob’s h-transform
gives

dXt =
[
ft +g2

t∇ logp1|t(x1|Xt)
]
dt+gt dWt, X1 = x1, x0 ∼ ν0 (5.98)

where p1|t(x1|xt) is the transition kernel of the T SDE satisfying the associated backward
FPK, given by Lemma 5.19 (cf. Lemma 5.4). We can further find the time-reversal process
for (5.98) [Zhou et al., 2024, Theorem 1]

dXt =
[
ft−g2

t (∇ logqt|1(xt|x1)−∇ logp1|t(x1|xt))
]
dt+gt dWt, X1 = x1 (5.99)

where qt|1(xt|x1) is the transition kernel of the new SDE in (5.98) (instead of T SDE)
conditioned on Y1 = x1. The goal is to learn this new score function ∇ logqt|1(xt|x1),
which can be achieved by applying the score matching [Song et al., 2020b].

Given paired training samples (x0,x1)∼ q01, Zhou et al. [2024, Theorem 2] considered a
score matching objective to learn the new score function

θ̂ = argminExt,x0,x1,t

[
λ(t)∥s̃t(θ̂)−∇ logqt|1(xt|x1)∥2

]
. (5.100)

However, we cannot directly find closed-form qt|1 in the topological case, we need to use
sliced score matching for this case.

Note that we can view that the underlying topological processX now follows the new SDE
pair (5.98) and (5.99) as the forward and backward processes, respectively. In this sense, the
topological diffusion bridge is a special case of the T SB when setting the policies as Zt =
gt∇ logp1|t(x1|xt) and Ẑt = gt∇[logqt|1(xt|x1)−∇ logp1|t(x1|xt)]. When performing
learning on these policies, since Zt is fixed once T SDE is given, the learning boils down to
training the parameterized Ẑ θ̂

t .

5.F Additional Experiments and Details
We first describe the synthetic experiment on matching Gaussian topological signal distribu-
tions based on the closed-form GT SB. Then, we detail the generative modeling experiments
conducted on real-world datasets based on T SB-models.

5.F.1 Closed-form GT SB corroboration
Graph GP matching: We build a synthetic graph with 30 nodes and 67 edges, as shown in
Fig. 4.3 (Left). From its graph Laplacian L, we construct the initial distribution of node
signals as a Matérn GP with zero mean and the kernel Σ0 = (I +L)−1.5, and the final
distribution as a diffusion GP with zero mean and the kernel Σ1 = exp(−20L). We consider
GT SB closed formsXt in (5.5) driven by both T SHeatBM and T SHeatVE. For the former, we
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set c= 0.5 and g = 0.01, labeled as GTSB-BM. For the latter, we consider σmin = 0.01 and
σmax = 1 with c= 0.01 and c= 10, labeled as GTSB-VE1 and GTSB-VE2, respectively.

We then compute the covariances Σt of the time marginals, which has a closed-form given
by Corollary 5.26, and obtain the samples based on the closed-form conditional distribution
[cf. Corollary 5.30] given an initial sample, illustrated in Fig. 5.4. We also measure the
Bures-Wasserstein (BW) distance [Bures, 1969] of Σt and Σ1 to evaluate the bridge quality,
shown in Section 5.6.

Edge GP matching: We also consider matching two edge GPs which are able to model the
discretized edge flows in a SC2 of the vector fields defined on a 2D plane [Chen et al., 2021c].
The initial edge GP has a zero mean and a divergence-free diffusion kernel with κC = 10,
while the final edge GP has a zero mean and a curl-free diffusion kernel with κG = 10 [cf.
Chapter 4]. We construct the closed-form GT SB Xt with the T SHeatBM as the reference
dynamics, where c = 1 and g = 0.01. We obtain the samples from the closed-form SDE
representation (5.7), shown in Fig. 5.5. We can see that the forward samples are able to
reach the final state, and the backward samples are able to reach the initial state, despite
some noise due to numerical simulation.

t=0.0 t=0.2 t=0.4 t=0.6 t=0.8 t=1.0

t=0.0 t=0.2 t=0.4 t=0.6 t=0.8 t=1.0

Figure 5.4: Covariances of the time marginals of the GT SB driven by T SHeatBM (Top) and T SHeatVE (Center),
as well as the samples conditioned on the inisital signal (Bottom).

5.F.2 T SB-based Generative Modeling and Matching

Data

Heat flows: We use the heatflow dataset from Southeastern Australia from Mather et al.
[2018], which collects the heatflow measurements with coordinates in total 294 from 1982
to 2016. Here we split the data into two parts, before and after 2010 (there is a significant
change in the heat flow pattern), to understand the evolution of the heat flow by modeling
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t=0.00 t=0.20 t=0.40 t=0.60 t=0.80 t=1.00

Figure 5.5: Forward and backward samples based on the closed-form SDE in (5.7) with respect to T SHeatBM.

them as initial and terminal data. That is, for this dataset, we consider the signal matching
task.

Seismic magnitudes: We use the seismic event catalogue for M5.5+ (from 1990 to 2018)
from IRIS which consists of 12,940 recorded earthquake events with magnitudes greater
than 5.5. To process these events, we use the stripy toolbox to obtain the icosahedral
triangulated mesh of the Earth surface [Moresi & Mather, 2019]. Using the refinement of
level three, this spherical mesh has 1,922 vertices. We refer to Fig. 5.6 for a visualization of
such a mesh of level one for better clarity.

5

0

5

Figure 5.6: Earth mesh (Left) and a node signal sample of the earthquake magnitudes (Right).

Upon this mesh, we first associate each earthquake event to the nearest mesh vertex based
on its longitude and latitude. All events are located on 576 unique vertices of the mesh.
Using these unique vertices, we then construct a 10-nearest neighbour graph based on
the geodesic distance between the vertices, and we use the symmetric normalized graph
Laplacian. Lastly, on top of this graph, we associate the yearly earthquake events to its
vertices and take the magnitudes as node signals, resulting in 29 such signals. Followed by
this, we preprocess the magnitudes by removing the mean over the years. For this dataset,
we consider the signal generation task.

Traffic flows: We consider the PeMSD4 dataset which contains traffic flow in California
from 01-01-2018 to 28-02-2018 over 307 sensors. We convert the node data into edge flows
over a SC2 with 307 nodes, 340 edges and 29 triangles, following Chen et al. [2022c], and
use the normalized Hodge Laplacian. For this dataset, we consider the signal generation
task.

Ocean currents: We consider the Global Lagrangian Drifter Data, which was collected by
NOAA Atlantic Oceanographic and Meteorological Laboratory. The dataset itself is a 3D
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point cloud after converting the locations of buoys to the earth-centered, earth-fixed (ECEF)
coordinate system. We follow the procedure in Chen & Meila [2021]; Chen et al. [2021c]
to first sample 1,500 buoys furthest from each other, then construct a weighted SC2 as
a Vietoris-Rips (VR) complex with around 20k edges and around 90k triangles. For this
dataset, we consider the signal matching task Upon the weighted Hodge Laplacian, we
use edge GP learned by Yang et al. [2024] from the drifter collected data as the initial
distribution and synthetize a curl-free edge GP as the final distribution. These two GPs
have rather different behaviors, able to model ocean currents with different behaviors and
make the matching task challenging. From these GPs, we can generate the samples for
training and testing in an efficient way based on eigenpairs associated to the 500 largest
eigenvalues, analogous to using Karhunen-Loéve type-decomposition for continuous GPs.

Brain fMRI signals: We consider the Human Connectome Project (HCP) [Van Essen et al.,
2013] Young Adult dataset where we model the human brain network as a graph and
perform the matching task on the measured fMRI signals recorded when the subject
performed different tasks. We use the HCP recommended brain atlas [Glasser et al., 2016]
where each hemisphere is divided into 180 cortical parcels. This results in a total of 360
brain regions. We then build a graph based on the physical conenction patterns between
these regions where the edge weights measure the strength of the axonal connections
between two regions, i.e., proportional to the inverse of the square distance [Perinelli et al.,
2019]. We use the symmetric normalized graph Laplacian. In our experiments, the two
sets of the fMRI signals, respectively, correspond to the liberal and aligned brain activities.
The former is associated with brain regions involved in high-level cognition, like decision
making and memory, whereas the latter is associated with the sensory regions, like visual
and auditory, meaning that functional signals are aligned with anatomical brain structure,
as shown in Fig. 5.7.

Figure 5.7: The energies of the initial (liberal) (Left) and
final (aligned) brain signals (Right).

Figure 5.8: Two-dim phate embedding of the
single-cell data [Moon et al., 2019].

Single-cell data: We consider the single-cell embryoid body data from [Moon et al., 2019],
which describes the differentiation of human embryonic stem cells grown as embryoid
bodies into diverse cell lineages over a period of 27 days. These cell data, X1,X2, . . . ,X5,
are collected at 5 timepoints (day 0–3, day 6–9, day 12–15, day 18–21, day 24–27, indexed
by t ∈ {1,2,3,4,5}), resulting in total 18,203 observations. We followed the preprocessing
steps provided by TorchCFM [Tong et al., 2024a;b]. Please refer to this link for the direct
use of preprocessed data [Tong, 2023]. Followed by this, we consider the two-dimensional
phate embedding for the data [Moon et al., 2019], resulting in the data coordinates of

https://github.com/atong01/conditional-flow-matching
https://data.mendeley.com/datasets/hhny5ff7yj/1
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dimension 18,203×2, as illustrated in Fig. 5.8. From the preprocessing, we can build a
sparse k-nearest neighbouring graph over the entire set of data observations. That is, we
have an adjacency matrix of dimension 18,203×18,203.

In our experiment, we aim to transport the observed data from day 0–3 to day 24–27, i.e.,
from t= 1 to t= 5. Thus, we build the two boundary distributions based on the normalized
indicator functions, which indicate the associated nodes of the data points observed at
these two timepoints. That is,

ν0 := 1X1/
∑

j∈X1
1X1(j) (5.101)

where the sum is over the nodes associated to the first-timepoint observations inX1, as the
initial distribution, and similarly, ν1 := 1X5/

∑
j∈X5

1X5(j) as the final one. After training
the models, using the final sample X̂t=5 obtained from the learned T SB given the initial
observations, we can obtain the predictions at the five timepoints based on the sorting (from
large to small) of X̂t=5. Specifically, given the indices after sorting, idx = argsort(X̂t=5),
we partition them into the disjoint sets, idx = S1∪S2∪·· ·∪S5 with |St|= nt the number
of observations at timepoint t for t= 1, . . . ,5. We then have the prediction labels given
by St that indicate the nodes supporting the data points predicted at timepoint t. The
disjointed indices in St essentially provide a labeling of the whole predictions for the
five timepoints. We found that using adjacency matrix as the convolution operator in the
reference dynamics performs better in practice.

Model

Models. We consider the following two sets of methods:
• Euclidean SB-based models with BM, VE and VP reference processes [Chen et al., 2022b],

which we refer to as SB-BM, SB-VE and SB-VP, respectively.
• Topological SB-based model with T SHeatBM, T SHeatVE and T SHeatVP as the reference
processes, which we refer to as TSB-BM, TSB-VE and TSB-VP, respectively.
For some datasets, we also apply the Gaussian SB SDE solution as the reference dynamics:
Euclidean SB-based models with the closed-form GSB SDEs (under BM and VE reference
processes) as the reference [Bunne et al., 2023], whichwe refer to asGSB-BM andGSB-VE,
respectively; and, topological SB-based model with the closed-form GT SB SDEs (5.7) (under
T SHeatBM and T SHeatVE) as the reference, whichwe refer to asGTSB-BM andGTSB-VE,
respectively.

Improving reference dynamics. Our proposed three types of reference dynamics have
fixed diffusion rates c. This may limit the model flexibility in capturing the dynamics of
the data, which we found especially in matching ocean current data. Thus, for this task,
we allow the time-varying diffusion rate ct. Specifically, we set it to be linearly increasing
as ct = cmin + t(cmax− cmin) for some cmin, cmax. Moreover, due to the nonlinearity of
the underlying process (from a non-curl-free GP to a curl-free GP), we also consider the
heterogeneous heat diffusion, as dicussed in (5.31) where the down and up diffusion rates
are different.
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Policy models. For the parameterization of the optimal policies (Zθ
t , Ẑ

θ̂
t ), we first obtain

the time and signal embeddings individually. To obtain the signal embedding from the
input, we consider the following two sets of models as the signal module:
• ResBlock model: one multi-layer perceptron (MLP) followed by a number of residual

block modules where each block has three MLPs with sigmoid linear unit (SiLU) activations.
• Topological neural network (TNN) model: For node signals, we consider two-layer

GCNs [Kipf & Welling, 2017] followed by one MLP; For edge flows in a SC2, we consider
two-layer SNNs [Roddenberry et al., 2021] followed by one MLP, where each SNN layer has
the linear convolutionX← LuXW2 +XW1 +LdXW0 with the down and up Laplacians
Ld,Lu and the learnable weightsW0,W1,W2.
To obtain the time embedding, we pass the sinusoidal positional encoding of the discretized
timepoint through a two-layer MLP module with SiLU activations. We then sum the two
embeddings and pass it through a two-layer MLP output module with SiLU to obtain the
final parameterization.

Implementation Details

Our implementation is built upon the SB-framework by Chen et al. [2022b]. We use AdamW
optimizer with a learning rate of 10−4 and Exponential Moving Average (EMA) with the
decay rate of 0.99. For the reference processes with BM involved, we treat the noise scale g
as a hyperparameter and optimize it by grid search. For the reference processes with VE and
VP involved, we grid search the noise scales σmin,σmax and βmin,βmax. For T SB-based
models, we grid search the optimal diffusion rate c and the noise scales involved in the
T SHeat.

In computing the likelihood in (5.9) during training, we use the trace estimator following
[Hutchinson, 1989] to compute the divergence. In generative procedures, we apply the
predictor-corrector sampling [Song et al., 2020b] to improve performance. To evaluate the
models, we compute the negative log-likelihoods (NLLs) in (5.91) for generation tasks. For
both generation and matching tasks, we assess the 1- and (square rooted) 2-Wasserstein
distances between the predicted and true signals.

Results

Heat flows: For matching the two types of heat flows, we observe from Table 5.2 that: (i)
T SB-based models are consistently better than SB-based models; and (ii) using GCNs for
policy models increases the performance by a large margin for both sets of models.

Seismic magnitudes: In generative modeling for seismic magnitudes, while we have the
similar observations as for the previous datasets, from Table 5.4, we also observe that the
GT SB-based models are able to achieve the best performance, and likewise GSB-based
models also increase the performance of SB-models. In Table 5.6, we report the 1- and
2-Wasserstein distances between the generated samples and the true ones.

Traffic flows: In geneartive modeling of traffic flows, we observe from Table 5.3 that:
T SB-based models achieve smaller NLLs and using SNNs for both models improves the
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t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

t=0.0 t=0.2 t=0.7 t=0.9 t=1.0

Figure 5.9: Backward sampled ocean currents using TSB-BM (Top), SB-BM (Center) and GTSB-BM (Bottom).

Table 5.2: Heat flow matching results.

Method ResBlock GCN
Forward Backward Forward Backward

SB-BM -0.10 ± 0.02 -0.08 ± 0.03 -0.74 ± 0.05 -0.72 ± 0.05
SB-VE -0.12 ± 0.02 -0.10 ± 0.01 -1.20 ± 0.07 -0.95 ± 0.07
SB-VP -0.09 ± 0.02 -0.08 ± 0.02 -0.83 ± 0.04 -0.66 ± 0.11
TSB-BM -0.29 ± 0.02 -0.27 ± 0.02 -0.83 ± 0.05 -0.81 ± 0.05
TSB-VE -0.31 ± 0.02 -0.29 ± 0.01 -1.26 ± 0.05 -0.97 ± 0.08
TSB-VP -0.57 ± 0.02 -0.55 ± 0.02 -1.01 ± 0.03 -0.92 ± 0.03

Table 5.3: Traffic flow results.

Method ResBlock SNN
SB-BM 0.82 ± 0.00 0.18 ± 0.02
SB-VE 0.77 ± 0.00 -0.42 ± 0.01
SB-VP 0.79 ± 0.00 -0.09 ± 0.01
TSB-BM 0.40 ± 0.00 0.02 ± 0.03
TSB-VE 0.01 ± 0.00 -0.89 ± 0.02
TSB-VP 0.02 ± 0.00 -0.32 ± 0.01

Table 5.4: Seismic magnitudes results.

Method ResBlock GCN
SB-BM 2.78 ± 0.01 2.71 ± 0.03
SB-VE 2.97 ± 0.03 2.73 ± 0.05
SB-VP 2.28 ± 0.02 2.01 ± 0.03
GSB-BM 1.86 ± 0.02 1.83 ± 0.05
GSB-VE 1.68 ± 0.03 1.46 ± 0.07
TSB-BM 2.13 ± 0.01 1.82 ± 0.02
TSB-VE 2.22 ± 0.02 1.53 ± 0.03
TSB-VP 2.00 ± 0.02 1.51 ± 0.02
GTSB-BM 1.58 ± 0.01 1.43 ± 0.04
GTSB-VE 1.49 ± 0.02 1.06 ± 0.04

Table 5.5: Ocean current matching results.

Method Foward Backward
SB-BM 7.21 ± 0.00 7.21 ± 0.00
SB-VE 7.17 ± 0.02 7.17 ± 0.02
GSB-BM 1.09 ± 0.01 0.97 ± 0.00
GSB-VE 0.83 ± 0.01 0.49 ± 0.00
TSB-BM 6.94 ± 0.01 3.70 ± 0.00
TSB-VE 6.89 ± 0.00 3.60 ± 0.00
GTSB-BM 1.09 ± 0.01 0.97 ± 0.00
GTSB-VE 0.53 ± 0.00 0.47 ± 0.00

performance. This observation is consistent with the Wasserstein metrics reported in
Table 5.6.

Ocean currents: In matching ocean currents with two types of different-behaving edge
GPs, note that the initial sample in the forward process in Fig. 5.3 and the final sample in the
backward process in Fig. 5.9 are the true samples. From these two figures, we first observe
that SB-based models fail to learn the dynamics to reach the expected end states, as shown
in Figs. 5.3 and 5.9. On the other hand, T SB-based models are able to reach an end state with
small curl component in the forward process, yet with some discrepancy from the true one.
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Table 5.6: Overall 1- and (square rooted) 2-Wasserstein distances for generating and matching.

Method Seismic magnitudes Traffic flows Brain signals Single-cell data
W1 W2 W1 W2 W1 W2 W1 W2

SB-BM 11.73±0.05 8.29±0.04 18.69±0.02 13.36±0.01 12.08±0.08 8.58±0.05 0.33±0.01 0.40±0.01
SB-VE 11.49±0.04 8.13±0.03 19.04±0.02 13.61±0.02 17.46±0.14 12.42±0.09 0.33±0.01 0.39±0.01
SB-VP 12.61±0.06 8.92±0.04 18.22±0.03 13.02±0.02 13.41±0.05 9.54±0.04 0.33±0.01 0.40±0.00

TSB-BM 9.01±0.03 6.37±0.03 10.57±0.02 7.62±0.01 7.51±0.08 5.51±0.06 0.14±0.03 0.28±0.05
TSB-VE 7.69±0.04 5.44±0.03 10.51±0.02 7.58±0.01 7.59±0.05 5.55±0.04 0.14±0.02 0.27±0.04
TSB-VP 8.40±0.04 5.95±0.03 9.92±0.02 7.16±0.01 7.67±0.11 5.64±0.09 0.14±0.01 0.22±0.03

Figure 5.10: Intermediate samples of brain signals learned using SB-VE (Top) and TSB-VE (Bottom).

Moreover, the learned backward dynamics remains noisy and does not completely return
to the initial state. This implies that the underlying dynamics cannot be fully captured by
the T SHeat-type reference processes. This can be largely alleviated by using GT SB-based
models, where both the forward and backward processes reach the expected states with
high fidelity. This is however because we have the initial and final distributions modeled
by GPs, allowing for GT SB to capture the underlying dynamics better. These observations
are reflected in the square-rooted 2-Wasserstein distance results in Table 5.5 between the
samples given by the learned forward process and the true ones, as well as for the backward
ones.

Brain fMRI signals: In matching the two brain fMRI signals, we observe from Fig. 5.10 that
TSB-VE-based model reaches the final state where the signals have lower energy over
the brain, indicating aligned activities, whereas SB-VE fails to do so. This is quantatively
reflected in terms of the Wasserstein metrics between the generated final samples and the
groundtruth ones in Table 5.6.
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Table 5.8: Intermediate prediction performance on single-cell data using TSB-BM and SB-BM.

Timepoint TSB-BM SB-BM

W1 W2 accuracy W1 W2 accuracy leave-one-out
2 0.03±0.00 0.09±0.00 0.80 0.52±0.01 0.59±0.01 0.28 0.24
3 0.09±0.00 0.22±0.01 0.42 0.12±0.00 0.21±0.00 0.23 0.20
4 0.08±0.00 0.16±0.01 0.45 0.19±0.00 0.34±0.00 0.26 0.26
5 0.14±0.03 0.28±0.05 0.70 0.33±0.01 0.40±0.01 0.24 1

Table 5.7: Ablation study results on graph normaliza-
tions for brain signal matching.

Method TSB-BM TSB-VE TSB-VP

W1,L
sym
norm 7.51 ± 0.08 7.59 ± 0.05 7.67 ± 0.11

W2,L
sym
norm 5.51 ± 0.06 5.55 ± 0.04 5.64 ± 0.09

W1,LRW 7.51 ± 0.08 7.62 ± 0.09 7.65 ± 0.09
W2,LRW 5.52 ± 0.06 5.58 ± 0.07 5.62 ± 0.06
W1,Lcomb 8.06 ± 0.05 9.21 ± 0.06 9.29 ± 0.05
W2,Lcomb 5.80 ± 0.04 6.62 ± 0.05 6.73 ± 0.03

Ablation study on graph normalizations.
Here, we compare the performance of the
TSB-based models using different ways of
graph Laplacian normalizations. Specifically,
we consider the random walk LRW and the
combinatorial Lcomb graph Laplacians. For
the latter, we normalize it by dividing the
maximal eigenvalue of the Laplacian for sta-
bility. From Table 5.7, we notice that us-
ing the random walk has comparable perfor-
mance with using the symmetric normalized
Laplacian Lsym

norm, and using the combinatorial one is worse than the other two. This is not
surprising since the combinatorial one does not encode the connection strength between
brain regions.

Single-cell data: We first measure the Wasserstein distances between the predicted single-
cells and the groundtruth ones at the final timepoint, as reported in Table 5.6. We here
provide the predictions in the two-dim phate embedding space for the SB-BM and
TSB-BMmodels in Fig. 5.2 and the latter has a much better prediction. Moreover, from the
final sample, we evaluate the predictions at the intermediate timepoints (see Appendix 5.F.2)
in Table 5.8 where the performance of TSB-BM is consistently better than SB-BM. Since
our method relies on a graph constructed from the entire data points, we also provide the
leave-one-out accuracy for SB-BM by training on the entire data points leaving out the
to-be-predicted timepoint. We see that while the accuracy for the final timepoint is perfect,
the intermediate predictions remain poor. In contrast, TSB-BM, by making use of the
topology, captures the underlying dynamics and predicts the intermediate states better.

Computational Complexity

Compared to SB-based models, the T SB-based models introduce an additional topologi-
cal convolution [cf. (5.1)] overhead, which however admits an efficient computation, as
discussed in Section 5.5. We here provide a quantative comparison of the compelxity in
terms of the training time and memory consumption. We measure them using SB-VE
and TSB-VE models on different-sized 10-nearest neighbour graphs built from Swiss roll
point clouds. This comparison is done in a single training stage with 2,000 iterations,
running on a single NVIDIA RTX 3080 GPU. As shown in Fig. 5.11, we observe that in
the moderate scale (≤ 10,000) region, the training time and memory consumption of
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TSB-VE are only slightly higher than SB-VE, with negligible difference. While this
overhead becomes more significant as the scale further increases, both training time
and memory can be reduced by exploiting the sparse structure (here implemented using
torch.tensor.to_sparse) in the graph topology such that the computational
overheads for for SB and TSB models remain comparable. Under the same settings, Ta-
ble 5.9 compares SB-BM and TSB-BM models across all datasets. The additional memory
and training time introduced by TSB-BM remain below 4%.
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Figure 5.11: Training time and memory comparison when training
SB-VE and TSB-VE w.r.t. different-sized graphs.

Dataset TSB-BM SB-BM

Seismic 516 512
50.17 51.48

Traffic 510 504
52.25 50.62

Ocean 5976 5892
106.68 102.67

Brain 486 468
49.62 48.97

Single-cell 4446 4294
94.30 92.54

Table 5.9: Complexity (first row:
memory (in MiB), and second
row: training time (in seconds)).
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6
Conclusion

Depending on the data type and the involved domain, machine learning is often divided
into sub-fields or sub-topics. For instance, computer vision focuses on images and videos;
natural language processing focuses on texts; and graph machine learning puts its focus on
data involved with graphs. The different nature of the data and the domains results in that
the specific techniques for processing and learning in these sub-fields differ to some extent.
For example, convolutions in image processing are operated within a regular grid of pixels,
different from graph convolutions which operate within local neighborhoods in a graph.
Also, the construction and use of kernels for images are different from graph kernels. While
the definition of distances is rather straightforward in a grid, it remains unclear in a graph.
However, in some way, the underlying principles to develop these techniques often share
the same core. That is, in each sub-field, most of the techniques attempt to leverage the
local relationships between data points to aid learning. This is often done by defining a
shift operation, which shifts the data points in the domain to their local neighborhoods,
and a sum operation, which aggregates the shifted data points. This offers interpretability
to some extent and reduced complexity, and explores the invariants of the domain. For
instance, convolution in image processing can be unified as a special graph convolution
on grid graphs, because they are fundamentally a shift-and-sum operation, despite that
the shift and sum operations might differ per domain. Also, kernel is a similarity measure
between two points in the domain, though the definition of similarity varies per domain.

In this thesis, we have presented our attempt towards a systematic study ofmachine learning
on simplicial complexes with signal processing principles such as convolutions and spectral
analysis. Although this establishes a new sub-field, our methodologies are developed
using the same train of thought nonetheless — respecting the underlying principles while
taking into account the specific characteristics of the signals and the nature of the domain.
Specifically, we bear in mind the Hodge decomposition of simplicial signals and the discrete
nature of simplicial complexes. In other words, exploiting these intrinsic properties of
signals and the domain allows us to incorporate priors or inductive biases to the processing
and learning, which in turn leads to better efficiency, interpretability and flexibility. The
tools we have developed make up a principled learning framework on simplicial complexes.
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The simplicial convolutional filters in Chapter 2 perform efficient processing of simplicial
signals within local simplicial neighborhoods, respect the convolution theorem, and allow
for individual filtering of the signals in the different Hodge subspaces. The simplicial
complex CNNs in Chapter 3 allow for efficient learning on simplicial complexes, and carry
with interpretability and flexibility, as well as being stable to domain perturbations. Beyond
the deterministic approaches, the Hodge-compositional simplicial Gaussian processes in
Chapter 4 offer Gaussian modeling of simplicial signals, which is simple, principled, and in-
terpretable, allowing for individual modeling in the different Hodge subspaces. These tools
are well-suited for modeling, processing and learning of simplicial signals, and enjoy inter-
pretability owing to their ability to account for the Hodge decomposition and the practical
properties of the signals, e.g., beging divergence-free or curl-free. Finally, the topological
Schrödinger bridge matching in Chapter 5 provides a framework for transporting one
simplicial signal distribution to another and offers a principled way to generative modeling
of simplicial signals. This work makes use of the three tools we have developed in the
previous chapters, reflecting their fundamental roles in learning on simplicial complexes.

Future Work
While our work has presented a few fundamental tools for simplicial signals, much work
remains unexplored in addition to the future work we have presented after each chapter.
First, these tools can be, respectively, improved and extended, in analogy to how graph
signal processing and machine learning tools advance over the years. In fact, some of the
recent works have made efforts in this direction. For instance, simplicial filters have been
accompanied with autoregressive time series filters for processing simplicial-time signals
[Krishnan et al., 2024]. A number of more powerful simplicial neural network architectures
have been developed, analogous to the advance of graph neural networks, as summarized
in Besta et al. [2024]. While this is a promising general direction, we highlighted the
importance of exploiting the Hodge decomposition of simplicial signals.

Second, as we have discussed in Chapter 4, simplicial signals (cochains) can be viewed
as discrete analogues of differential forms on manifolds — informally, graph signals are
analogous to scalar fields and edge flows to vector fields; and both graph Laplacians and
Hodge Laplacians have their continuous counterparts. This discrete-continuous analogy
has inspired us in developing some of the tools in this thesis. For example, when modeling
the Hodge-compositional edge Gaussian processes, we build the kernels based on several
differential equations which have their analogy in continuous domain. This train of thought
can be futher exploited — by taking inspiration from time domain processing, different
dynamics can be constructed on simplicial complexes. We have made attempts on this in
Chapter 5 where we studied stochastic heat diffusions on simplicial complexes. In analogy
to Nikitin et al. [2022] for the graph case, this allows for nonseparable temporal-simplicial
kernels to model temporal-simplicial Gaussian processes.

Third, our current research on dealing with simplicial signals of different orders remains
limited. In a 2-simplicial complex, when we have a system of node signals, edge flows, and
triangle flows, our filtering and learning tools are limited to the basic linear interactions
between them via the incidence matrices (first-order derivatives). Having the continuous
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analogy in mind, we expect more complex interactions between these signals especially
when there is a time factor involved. For example, Giambagli et al. [2022]; Nijholt & DeVille
[2022]; Nurisso et al. [2024]; Ziegler et al. [2022], among others, constructed a system of
differential equations on simplicial complexes to model the interactions between node
signals, edge flows, and triangle flows, resembling the continuous diffusion, convection
dynamics and their nonlinear variants, like Kuramoto dynamics. Machine learning models
based on these dynamics have not been well studied yet, though a number of works have
constructed GNNs inspired by complex dynamics on networks such as Chamberlain et al.
[2021a;b]; Chen et al. [2022a]; Eliasof et al. [2021]; Rusch et al. [2022]. They may be helpful
to model more complex interactions between simplicial signals across different orders
in many real-worl physical systems involved with scalar fields, vector fields and other
quantities, such as electromagnetic waves [Tarhasaari et al., 1999; Teixeira, 2001] and
shallow water flow [Lee et al., 2018]. This in turn raises the question of modeling more
real-world systems in simplicial complexes, and brings us to the next point.

Finally, future work can be explored application-wise. Notably, one can model electric
power systems and circuits as graphs or simplicial 2-complexes where voltages and currents
are edge flows. In these systems, the edge flows can be complex-valued due to the presence
of reactive power, which poses the imporance of performing complex-valued simplicial
signal learning. Also, most of the real-world physical applications in our work involve edge
flows, which are limited to 1-simplicial signals. Potential applications involving simplicial
signals of different orders and of higher-orders can be explored, which we foresee in the
context of electric networks, biological (e.g., brain, population) networks, social networks.
As a limitation, the experimental implementations in this work are more in the exploratory
phase, as a proof of concept of our tools, which however allows domain expertise to bring
them closer to practice. We also look forward to exploring the potential of our work in
more forward physics and engineering problems that remain to be addressed. We note that
Kerimov et al. [2024; 2025] have made progress in applying some of the tools developed in
this work to water supply networks.

Overall, this thesis provides foundational advances in the intersection of topology, signal
processing, statistics and dynamics, with the goal of contributing to the field of topological
machine learning (including neural networks, statistical learning and generative modeling).
Due to this interdisciplinary nature, we believe that our work can be further developed in
both the signal processing and machine learning communities, as well as in the network
science, physics and engineering communities. We hope that our work can inspire more
researchers to explore the potential of simplicial machine learning in various applications,
and to further the tools presented in this thesis.
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